Студопедия — Несобственные интегралы от разрывной функции по конечному промежутку (второго рода)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы от разрывной функции по конечному промежутку (второго рода)






Функция может терпеть разрыв на левом конце отрезка , на правом конце или в некоторой внутренней точке с отрезка.

Пусть функция непрерывна на отрезке за исключением точки x= a, тогда несобственным интегралом второго рода от функции по отрезку называется предел =

.

Пусть функция непрерывна на отрезке за исключением точки x= b, тогда несобственным интегралом второго рода от функции по отрезку называется предел = .

Пусть функция непрерывна на отрезке за исключением точки x= , тогда несобственным интегралом второго рода от функции по отрезку называется = (интегралы в правой части определены выше).

Если указанные пределы существуют и конечны, то интегралы называются сходящимися, если предел бесконечен или не существует вообще, то интеграл расходится.

Если сходятся интегралы от функций , то сходятся интегралы от функций . Это следует из теорем о пределах.

Пример.

Интеграл расходится, так как пределы в правой части равенства бесконечны.

Заметим, если здесь формально применить формулу Ньютона-Лейбница (она неприменима, т.к. функция разрывна), получим ответ 2. Еще раз убеждаемся, что теоремы следует применять, внимательно проверяя условия их применимости.

Рассмотрим несобственный интеграл Дирихле второго рода .

.

При , интеграл расходится.

Итак, несобственный интеграл Дирихле второго рода сходится при расходится при

Замечание. Интегралы Дирихле первого и второго рода расходятся при n=1. При n>1 интеграл Дирихле первого рода сходится, а интеграл Дирихле второго рода расходится. При n<1 интеграл Дирихле первого рода расходится, а интеграл Дирихле второго рода сходится.

Признаки сравнения интегралов остаются верными и для интегралов второго рода. Эталонами сравнения служат обычно интегралы Дирихле и интегралы от показательной функции.

 

Примеры. сходится сравнением с несобственным интегралом Дирихле (n= ) по второму признаку сравнения. Вспомните, что сумма бесконечно малых функций в знаменателе эквивалентна при бесконечно малой наинизшего порядка малости. Можно доказать эквивалентность непосредственным вычислением предела.

расходится сравнением с интегралом по второму признаку сравнения.

 







Дата добавления: 2015-04-16; просмотров: 501. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия