Студопедия — Жидкостно-мозаичная модель мембран
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Жидкостно-мозаичная модель мембран






 

Функционирующие мембраны представляют собой двумерный раствор глобулярных интегральных белков, диспергированных в жидком фосфолипидном матриксе. Жидкостно-мозаичная модель мембранной структуры была предложена в 1972 г. Сингером и Николсоном (рис. 2).

Первые данные об адекватности этой модели были получены при искусственно индуцированном слиянии двух разных родительских клеток. Оказалось, что при образовании межвидовой гибридной клетки в плазматической мембране происходит быстрое стохастическое перераспределение видоспецифичных белков. Впоследствии было показано, что фосфолипиды тоже способны быстро перераспределяться в плоскости мембраны. Такая диффузия в плоскости мембраны, называемая латеральной, может осуществляться довольно быстро: одна молекула фосфолипида перемещается за 1 с на расстояние несколько микрометров.

 

 

6. Фазовые переходы мембран. Изменение свойств мембран при фазовом переходе.

 

При отвердевании липидной мембраны длинные неполярные хвосты липидных молекул упаковываются в плотную упорядоченную структуру, подобную двумерному твердому телу. При этом площадь поверхности мембраны сильно сокращается (см. рис. 16). Из исследований модельных мембран известно, что площадь сокращается на 20-25%. При этом толщина бислоя возрастает почти настолько же, в результате чего объем мембраны уменьшается только на 3-5%.

Если мембрана несет избыточный отрицательный заряд, то жидкое и твердое состояния различаются по способности к взаимодействию с ионами, в частности с кальцием. В твердом состоянии поверхностная плотность зарядов выше и потому взаимодействие с кальцием сильнее. Благодаря изменениям перечисленных экстенсивных свойств состояние мембраны зависит от сопряженных интенсивных свойств. В соответствии с принципом Ле-Шателье отвердевание можно вызвать понижением температуры (потому что при переходе уменьшается энтальпия), увеличением концентрации Ca2+ (потому что возрастает сродство к нему), увеличением давления (потому что уменьшается объем), латеральным давлением (потому что сокращается площадь поверхности). Для нашего рассмотрения наиболее важными факторами являются температура, давление, концентрация ионов кальция и некоторых других низкомолекулярных соединений, взаимодействующих с мембраной.

 

Фазовые переходы и, следовательно, текучесть мембран сильно зависят от липидного состава мембран. В липидном бислое гидрофобные цепочки жирных кислот ориентированы практически параллельно друг другу, в результате чего образуется достаточно жесткая структура.

При повышении температуры гидрофобный слой переходит из упорядоченного состояния в неупорядоченное, и образуется более жидкая, текучая система. Температура, при которой вся структура претерпевает переход из упорядоченного состояния в беспорядочное, называется температурой перехода. Более длинные и более насыщенные жирнокислотные цепи обладают более высокой температурой перехода, т.е. для повышения текучести образованной ими структуры необходима более высокая температура. Наличие ненасыщенных связей в цис-конфигурации приводит к повышению текучести бислоя из-за снижения компактности упаковки цепей без изменения гидрофобности. Фосфолипиды клеточных мембран обычно содержат по крайней мере одну ненасыщенную жирную кислоту, имеющую по крайней мере одну двойную связь в цис-положении.

Холестерол играет роль молекулярного модификатора мембран, включение которого приводит к образованию состояний с промежуточной текучестью. Если ацильные боковые цепи находятся в неупорядоченном состоянии, то холестерол вызывает их конденсацию; если же они образуют какую-то кристаллоподобную структуру, то холестерол переводит ее в неупорядоченное состояние. При высоком отношении холестерол/липид фазовый переход вообще не происходит.

Текучесть мембраны сильно влияет на ее функционирование. При увеличении текучестимембрана становится более проницаемой для воды и других малых гидрофильных молекул, растет скорость латеральной диффузии интегральных белков. Если активный центр интегрального белка, осуществляющий некую функцию, располагается исключительно в гидрофильной его части, то изменение текучести липидов, вероятно, не скажется слишком сильно на активности белка. Но если белок выполняет транспортную функцию и транспортный компонент пересекает мембрану, то изменения свойств липидной фазы могут привести к значительному изменению скорости транспорта. Превосходным примером является зависимость функционирования инсулинового рецептора от текучести мембран. Когда концентрация ненасыщенных жирных кислот в мембране растет (при культивировании клеток в среде, богатой этими соединениями), увеличивается текучесть, а это приводит к тому, что рецептор связывает больше инсулина.

Текучесть мембраны и соответственно латеральная подвижность могут быть неодинаковыми в разных ее участках. Например, в плоскости мембраны могут возникать белок-белковые взаимодействия, приводящие к образованию жесткого белкового матрикса в отличие от обычного липидного матрикса. Такие области белкового матрикса могут сосуществовать с обычным липидным матриксом в одних и тех же мембранах. Примерами такого тесного соседства различных матриксов являются области щелевых контактов, плотных контактов, а также бактериоро-допсинсодержащие фрагменты пурпурных мембран галобактерий.

Некоторые латеральные белок-белковые взаимодействия опосредуются периферическими белками; например, образуются сшивки через антитела и лектины и формируются так называемые кэп-структуры на поверхности мембраны. Таким образом, периферические белки, участвуя в специфических взаимодействиях, могут ограничивать подвижность интегральных белков внутри мембраны.

 







Дата добавления: 2015-04-16; просмотров: 1010. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.032 сек.) русская версия | украинская версия