Студопедия — Включение (отключение) режима автоматического регулирования
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Включение (отключение) режима автоматического регулирования






При включении питания электронагревателя режим автоматического регулирования выключен. При выполнении экспериментов целесообразно задать начальное значение температуры и, после этого, включить режим автоматического регулирования.

Переключение режима автоматического регулирования:

1. Однократно нажать кнопку 7 (рис. 1.6.1) регулятора температуры. На индикаторе 3 (красный, PV) отобразиться надпись «r-S». На индикаторе 4 (зеленый, SV) текущее состояние регулятора «StoP» (СТОП) или «rUn» (РАБОТА).

2. Для изменения состояния регулятора нажать любую из кнопок 5 или 6 – индикатор 4 начнет мигать. Повторное нажатие кнопки 5 или 6 переключит режим («StoP»↔«rUn»).

3. Нажатие кнопки 7 фиксирует выбранное значение (индикатор 4 не мигает). Повторное нажатие кнопки 7 возвращает регулятор температуры в исходное состояние – на индикаторе отображаются текущее и заданное значения температуры. Светодиод RS сигнализирует о состоянии регулятора: включен – режим «rUn» (РАБОТА), выключен - «StoP» (СТОП).

 

Подробно режимы работы измерителя-регулятора температуры ТР441 и порядок его программирования описаны в литературе: «Измерители-регуляторы температуры ТР440 и ТР441. Руководство по эксплуатации» ТАЛС.405111.040 РЭ. (Файл TR440_TR441_doc_020607.pdf записан на компакт-диске с документацией). При выполнении экспериментов любые изменения параметров регулятора температуры, кроме указанных выше, не допускаются.

 

 

1.7. Набор миниблоков «Электротехнические материалы»

Миниблоки представляют собой отдельные элементы электрических цепей или функциональные блоки, из которых непосредственно в ходе лабораторной работы собирается исследуемая электрофизическая установка на наборном поле блока генераторов напряжений.

Все миниблоки хранятся в контейнере, общий вид которого представлен на рис. 1.7.1. На этикетках миниблоков изображены упрощённые электрические схемы соединения основных элементов, показано расположение выводов и приведены основные технические параметры.

Ниже приводятся краткие сведения о каждом миниблоке.

1. Миниблок «Сегнетоэлектрик» предназначен для снятия поляризационной кривой сегнетоэлектрика и изучения её зависимости от температуры. Внутрь миниатюрной печки помещён конденсатор 1 мкФ типа Y5V вместе с термопарой и сигнальной лампочкой. Поляризация сегнетоэлектрика в нём достигает насыщения при напряжении 25…30 В. Максимальная амплитуда, которую может дать генератор напряжений специальной формы составляет 10 В. Поэтому, при снятии поляризационной кривой необходимо использовать повышающий трансформатор. Сегнетоэлектрик, используемый в данном типе конденсаторов, имеет точку Кюри при отрицательных температурах, При положительных температурах он ведёт себя как параэлектрик. С увеличением температуры диэлектрическая проницаемость и нелинейность поляризационной кривой уменьшаются. При температуре 70…80оС конденсатор становится практически линейным.

2. Миниблок «Трансформатор тороидальный» предназначен для исследования магнитных свойств ферромагнитных сердечников (без нагрева). Он выполнен на двух сердечниках М2000НМ диаметром 20 мм и имеет три обмотки – 100, 100 и 200 витков. На миниблоке имеется двухполюсный переключатель, при переключении которого изменяется направление тока в первичной обмотке. Трансформатор может быть также использован для повышения или понижения переменного напряжения.

3, 4. Миниблоки «ГМ14ДС» и «ГМ11ДС» также представляют собой торроидальные трансформаторы, предназначенные для изучения магнитных свойств ферромагнитных материалов. Они выполнены на кольцевых сердечниках из аморфной ленты толщиной 20…25 мкм, полученной на основе сплавов железа или кобальта. Магнитопровод ГМ11ДС имеет очень высокую относительную магнитную проницаемость (до 30000) и низкую магнитную индукцию насыщения (порядка 0,28 Тл). Магнитная проницаемость сплава ГМ14ДС порядка 10000, а индукция насыщения более 1 Тл.


В магнитопроводах ГМ14ДС достигается относительная магнитная проницаемость 10000, а индукция насыщения 0,75 Тл. В обоих трансформаторах на сердечник диаметром 20 мм намотаны две обмотки по 100 витков.

 

Рис. 1.7.1. Набор миниблоков


5. Миниблок «Интегратор» предназначен для интегрирования входного сигнала uвх(t) или iвх по времени:

Параметры Rвх и С указаны на упрощенной принципиальной схеме интегратора (рис.1.7.2).

Интегратор имеет два режима работы. При разомкнутом состоянии выключателя «Сброс» (нижнее положение тумблера на миниблоке) происходит интегрирование входного сигнала. Напряжение на выходе в этом режиме медленно изменяется даже при отсутствии входного сигнала, поскольку всегда есть внутренние утечки схемы и помехи. Этот режим используется для интегрирования кратковременных одиночных импульсов тока или напряжения, например, для измерения заряда при включении конденсатора на постоянное напряжение или для измерения потоксцепления при включении и отключении катушки индуктивности. Перед началом интегрирования необходимо «обнулить» интегратор включив на 2…3 с выключатель «Сброс».

При включённом выключателе «Сброс» (верхнее положение тумблера на миниблоке) медленно изменяющаяся составляющая входного сигнала не интегрируется. Этот режим используется для возвращения интегратора в нулевое положение и для интегрирования периодических быстро протекающих процессов, например, при снятии петли гистерезиса.

Напряжение на выходе интегратора не может быть больше напряжения питания, поэтому, когда оно приближается к напряжению питания +15 В или –15 В, включается светодиод «Перегрузка».

Для удобства подключения интегратора к источникам питания, к входным и выходным цепям, он устанавливается на наборном поле всегда в отведённом для него месте (см. рис. 1.2.1). При этом к нему подводится напряжение питания + 15В относительно средней точки, обозначенной на наборном поле символом ^.

6. Миниблок «Точка Кюри» предназначен для исследования магнитных свойств ферромагнетика. На кольцевой сердечник из феррита марки М6000НМ размещены две обмотки по 250 витков. Размеры сердечника: наружный диаметр – 16 мм, внутренний – 10 мм, толщина – 4,5 мм. На этикетке миниблока указаны сечение сердечника и длина средней линии. Сердечник с обмотками помещён в миниатюрную печь, вместе с термопарой и сигнальной лампочкой.

На нагревательный элемент подаётся напряжение от источников постоянного напряжения. Оно регулируется от 15 до 30 В. При напряжении 30 В нагрев до точки Кюри (паспортное значение 110оС) происходит примерно за 20 – 25 минут. Запрещается нагревать миниблок до температуры более120о и оставлять его нагретым выше 70о на длительное время.


7. Миниблок «Трансформатор с разъёмным сердечником» может использоваться как собственно трансформатор для повышения или понижения напряжения, как регулируемая индуктивность, если между подковами разъёмного сердечника вставлять неферромагнитные прокладки различной толщины (полоски бумаги или картона), как установка для изучения явления взаимной индукции (коэффициент связи можно изменять удаляя из катушек половинку или весь сердечник), как установку для изучения закона электромагнитной индукции (если при питании постоянным током из катушки быстро удалить сердечник, то с помощью интегратора можно зафиксировать изменение потокосцепления и возникновение ЭДС). Возможны и другие применения этого миниблока.

8. Миниблок «Выключатель» представляет собой тумблер, служащий для включения и выключения какой либо цепи при выполнении эксперимента.

9, 10. Два одинаковых по конструкции миниблока «R1» и «R2», в каждом из которых помещён отрезок проводника, известной длины и диаметра (проводник выполнен ввиде катушки). Миниблок служит для измерения сопротивления с помощью измерителя параметров R, L, C, определения удельного сопротивления проводника и определения материала, из которого он может быть выполнен.

11, 12, 13. Одноэлементные миниблоки «Резистор», в каждый из которых помещён резистор, сопротивление которого указано на этикетке.

14. Одноэлементный миниблок «Конденсатор», в котором смонтирован электролитический конденсатор ёмкостью 100 мкФ.

 







Дата добавления: 2015-04-16; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия