Студопедия — Перечень вопросов. Если функция y=f(x) такова, что для любого ее значения yo
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перечень вопросов. Если функция y=f(x) такова, что для любого ее значения yo






Если функция y=f(x) такова, что для любого ее значения yo

уравнение f(x)=yo имеет относительно х единственный

корень, то говорят, что функция f обратима.

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и

областью ее значений является промежуток Y, то у нее существует обратная

функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x),

надо график функции y=f(x) подвергнуть преобразованию симметрии относительно

прямой y=x.

Сложная функция- функция, аргументом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2.

Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.

 

30) Элементарные функции: определение, классификация.

Основные элементарные функции:

1) постоянная y=C; C – const;

2) степенная y=xα;

3) показательная y=ax (a>0, a≠1);

4) логарифмическая y=log a x (a>0, a≠1);

5) тригонометрическая y=sin x; y=cos x; y=tg x; y=ctg x;

6) обратные тригонометрические y=arcsin x; y=arcos x; y=arctg x; y=arcctg x.

 

Всякая функция, которая может быть явным образом задана с помощью формулы,содержащей лишь конечное число арифметических операций и суперпозиций основных элементарных функций, называется просто элементарной функцией.

Пример:

Замечание: суперпозиция – когда одна функция имеет своим аргументом другую: y=sin x → z=log y⇒z=log sin x.

Элементарные функции делят на следующие классы:

1) многочлены (полиномы).

Это функции, заданные формулами вида y=Pn(x)=a0+a1x+…+anx

Если an≠0, то число n – называется степенью данного многочлена. Многочлен первой степени называют также линейной функцией.

2) Рациональные функции (рациональные дроби) вида y=P(x)/Q(x), где P(x), Q(x) –многочлены.

3) Иррациональные функции – функции, которые задаются с помощью суперпозиций

конечного числа рациональных функций, степенных функций с рациональными показателями и четырех арифметических действий: .

4) Трансцендентные функции. Элементарные функции, не являющиеся

иррациональными, называются трансцендентными.

Пример: прямые, обратные тригонометрические функции, показательные и

логарифмические

 

 

Перечень вопросов







Дата добавления: 2015-03-11; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия