Студопедия — Аппаратура в атомно-эмиссионном анализе
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аппаратура в атомно-эмиссионном анализе






 

 

Принципиальная схема атомно-эмиссионного спектрометра приведена на рисунке 4.1.

 

 
 

 


Рисунок 4.1. Принципиальная схема атомно-эмиссионного

спектрометра

 

В отличие от рассмотренных ранее схем абсорбционных спектрометров, здесь, естественно, отсутствует внешний источник излучения. Другая особенность - возмож­ное использование вместо монохроматора полихроматора — устройства, обеспечивающ­его возможность одновременной регистрации множества спектральных линий и — как следствие — возможность проведения экспрессного многоэлементного анализа. В качестве монохроматоров и полихроматоров обычно применяются призмы или дифрак­ционные решетки. При использовании их как монохроматоров на выходе имеется щель, выделяющая узкую спектральную область; у полихроматоров такая щель отсутствует. При пламенной атомизации ввиду малого числа наблюдаемых в этих условиях эмис­сионных линий возможно и использование монохроматоров низкого разрешения — светофильтров.

В качестве детекторов в случае, если используются монохроматоры, применяют фотоэлектрические преобразователи тех же типов, что и в других оптических методах анализа (фотоэлементы, фотоэлектронные умножители, фотодиоды). При использова­нии полихроматоров применяют набор таких детекторов, обычно фотодиодов ("диод­ная линейка"). Однако в этом случае используют и другие способы регистрации. Наиболее распространенный из них — фотографический (фотохимический), при кото­ром эмиссионный спектр фотографируют на фотопластинку. Интенсивность спектраль­ной линии в этом случае находят, измеряя почернение (оптическую плотность) изобра­жения линии на фотопластинке. Для массовых полуколичественных анализов применяют и приборы с визуальной индикацией (стилоскопы).[1]

Рассмотрим принципиальную схему пламенного фотометра. Эмиссионный пламенный фотометр состоит из трёх основных узлов: распылителя и горелки, светофильтра или монохроматора и измерительного устройства; принципиальная схема прибора показана на рисунке 4.2.

Анализируемый раствор 1 превращают в аэрозоль при помощи распылителя 2 (работающего под действием сжатого воздуха или кислорода) и вводят в пламя 3 горючей смеси воздуха или кислорода с водородом (иногда с каким-нибудь углеводородом: ацетиленом, пропаном, бутаном). Точность и чувствительность пламенно-фотометрических определений в значительной степени зависят от степени распыления раствора и работы горелки. Светофильтр (или монохроматор) 4 выделяет из спектра определённую спектральную линию, используемую для измерения. Фотоэлемент 5 (или фотоумножитель), а также гальванометр 6 служат для измерения интенсивности спектральной линии.

1 – анализируемый раствор; 2 – распылитель;3 – пламя горелки; 4 – светофильтр (или монохроматор); 5 – фотоэлемент; 6 – гальвонометр

Рисунок 4.2. Схема эмиссионного пламенного фотометра.

 

Большое значение в этом методе имеет температура пламени. При сжигании смесей воздуха с пропаном или бутаном достигается температура 1700...1900 °С и возбуждаются только атомы щелочных металлов. Для определения щёлочноземельных металлов необходимо пламя смеси воздуха с ацетиленом, дающее температуру около 2300 °С. Универсальным считают пламя смеси кислорода с водородом (2500 °С) или с ацетиленом (3150 °С).

В лабораторной практике используют как пламенные фотометры со светофильтрами, так и спектрофотометры для пламенной фотометрии.

Пламенные фотометры со светофильтрами служат главным образом для определения в растворах калия, натрия, кальция и иногда лития, т.е. для анализа объектов простого состава. Работают они обычно на низкотемпературном пламени смесей горючих газов с воздухом; распылители их снабжены специальными камерами для удержания крупных капелек аэрозоля, не испаряющихся в пламени. В нашей стране выпускаются пламенные фотометры марок ФПФ-58, ФПЛ-1, ПФМ, ФЛАФО-4.

Спектрофотометры для пламенной фотометрии более чувствительны и обеспечивают высокую монохроматизацию излучения. Они снабжены специальными горелками для сжигания смесей горючих газов с кислородом, причём газы смешиваются у выхода из сопла, анализируемый раствор впрыскивается непосредственно в пламя. Примером спектрофотометра для пламенной фотометрии может служить прибор ПАЖ-1.[2]


 







Дата добавления: 2015-06-15; просмотров: 734. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия