Студопедия — Формула Байеса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Байеса






Эта формула применяется при решении практических задач, когда событие , появляющееся совместно с каким-либо из событий ,

образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез .

Априорные (до опыта) вероятности

известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности .

Для гипотезы формула Байеса выглядит так:

 

 

Пример 1. Вероятности попадания в цель при стрельбе из трех орудий таковы: p 1 = 0,8; p 2 = 0,7; p 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Р е ш е н и е. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события A1 (попадание первого орудия), А2 (попадание второго орудия) и A3 (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям A1, А2 и А3 (т. е. вероятности промахов), соответственно равны:

q 1 = l — p 1 = l — 0,8 = 0,2; q 2 = l — p 2 = l — 0,7 = 0,3;

 

q 3 = 1 — p 3 = 1 — 0,9 = 0,l.

 

Искомая вероятность

P (A) = 1 — q 1 q 2 q 3 = 1 — 0,2 * 0,3 * 0,1 = 0,994.

 

Пример 2. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Р е ш е н и е. События "машина работает" и "машина не работает" (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

р + q = 1.

 

Отсюда вероятность того, что машина в данный момент не работает, равна

q = l — p = l — 0,9 = 0,1.

 

Искомая вероятность

Р (A) = 1 — q 4 = 1 — 0,14 = 0,9999.

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Предположим, что несколько одинаковых машин в одних и тех же условиях перевозят груз. Любая машина может выйти из строя при этих перевозках. Пусть вероятность выхода из строя одной машины не зависит от выхода из строя других машин. Это значит, что рассматриваются независимые события (испытания). Вероятности выхода из строя каждой из этих машин примерно одинаковымый ().

Пусть, в общем случае, производится независимых испытаний. Ставится задача определения вероятности того, что ровно в испытаниях наступит событие , если вероятность наступления этого события в каждом испытании равна . В случае с машинами это могут быть вероятности выхода из строя ровно одной машины, ровно двух машин и т.д.

Определим вначале вероятность того, что в первых испытаниях событие наступит, а в остальных испытаниях — не наступит. Вероятность такого события может быть получена на основании формулы вероятности произведения независимых событий

,

где .

Так как рассматривалась только одна из возможных комбинаций, когда событие произошло только в первых испытаниях, то для определения искомой вероятности нужно перебрать все возможные комбинации. Их число будет равно числу сочетаний из элементов по , т.е. .

Таким образом, вероятность того, что событие наступит ровно в испытаниях определяется по формуле

,

где .

Формула носит название формулы Бернулли.

Пример. В четырех попытках разыгрываются некоторые предметы. Вероятность выигрыша в каждой попытке известна и равна 0,5. Какова вероятность выигрыша ровно трех предметов?

Решение. По формуле Бернулли находим

В конце 19 века в теории вероятностей возникло направле­ние исследований, которое получило название: предельные теоремы теории вероятностей. В этом направлении, начало которого было положено нашими соотечественниками П.Л.Чебышевым, А.А.Марковым, А.М.Ляпуновым, по сей день ведутся интенсивные исследования. Предельные теоремы теории вероятностей можно разбить на две боль­шие группы.

1. Одна группа теорем составляет "закон больших чисел". Закон больших чисел формулирует условия, при которых совокупное действие большого числа случайных факторов приводит к результату почти не зависящему от случая (т.е. практически постоянный результат)

2. Вторая группа теорем связана с выяснением вопроса о распределении сумм большого числа случайных величин. В этих теоремах выясняется, какие законы распределения может иметь сумма случайных величин, если число слагаемых неограниченно увеличивается, и какие условия при этом нужно наложить на сами величины. В частности, центральная предельная теорема посвяще­на установлению сумм, при которых возникает нормальный закон распределения.

Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти всюду.

Всегда найдётся такое конечное число испытаний, при котором с любой заданной наперёд вероятностью меньше 1 относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел — совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.







Дата добавления: 2015-06-15; просмотров: 792. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия