Студопедия — Неконтактные термометры
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неконтактные термометры






Неконтактные методы измерения температуры оказываются очень полезными в тех случаях, когда либо объект по каким-либо причинам недоступен для установки в него контактного термометра или удален от нас (космические объекты, звезды), либо когда необходимо измерять очень высокие температуры и невозможно создать датчик, выдерживающий их. Кроме того, за последние десятилетия благодаря успехам в создании приемников инфракрасного излучения появилась возможность достаточно точного измерения комнатных температур приемниками инфракрасного излучения - болометрами и тепловизорами. В последних сочетаются методы инфракрасной техники и телевизионных методов визуализации инфракрасных изображений.

В первом параграфе данного раздела указано, что основу неконтактных методов излучения температуры составляют законы излучения абсолютного черного тела. Измерительные приборы, в которых измеряется интегральное тепловое излучение и для определения температуры используется закон Стефана-Больцмана (6.6) называют радиометрами. Схема, поясняющая принцип действия радиометра, показана на рис. 6.9 .

Рис. 06.09. Регистрация температуры радиометром
 

 

 

В радиометре участок поверхности, температуру которого измеряют, визуализируют на поверхности термочувствительного приемника, преобразующего изменение температуры в электрический сигнал. Градуировка радиометра производится по сигналу от поверхности, температура которой хорошо измерена другими методами. Болометр представляет собой либо чувствительную термопару, либо термосопротивление с сильной зависимостью сопротивления от температуры. Для достижения очень высокой чувствительности терморезистивного болометра его элемент поддерживают при температуре, близкой к температуре сверхпроводимости. Такие сверхпроводящие болометры позволяют добиваться очень высокой точности в малых измерениях температуры.

Недостатком радиометра как средства измерения температуры является очевидный факт, что всю энергию излучения в диапазоне длин волн или частот от нуля до бесконечности собрать невозможно. Каждый радиометр имеет коротковолновую и длинноволновую границы чувствительности. По этой причине температура, измеренная радиометром, будет отличаться от термодинамической температуры, измеряемой контактными термометрами. Существует в термометрии понятие радиационной температуры, которая по закону Стефана-Больцмана равна

(6.20)

где σ - постоянная Стефана-Больцмана; ω(λ) - спектральное распределение падающего на радиометр излучения; λ1 и λ2 - коротковолновая и длинноволновая границы чувствительности фотоприемника; φ(λ) - спектральная относительная чувствительность фотоприемника. Температуру объектов, светящихся в видимой области спектра, например, нитей накаливания ламп, пламен, раскаленных предметов и т. п. измеряют яркомерами или пирометрами, т. е. приборов для измерения температуры «огня». Пирометры существуют визуальные и с фотоэлектрической регистрацией. В последнем варианте они чаще измеряют не только температуру, но и яркость. Схема визуального пирометра с исчезающей нитью приведена на рисунке 6.10 .

Рис. 06.10. Пирометр с исчезающей нитью
 

 

 

В таком пирометре оператор фиксирует визуально момент совпадения яркости изображения измеряемого объема и нити накаливания, встроенной в пирометр. Изменяя реостатом ток через нить накаливания, добиваются выравнивания яркости. Этот момент человеческий глаз фиксирует достаточно точно. Прибор градуируется потоку, проходящему через реостат.

Очевидно, что в пирометре также фиксируется температура, несовпадающая с термодинамической. Во-первых, точное совпадение показаний пирометра с термодинамической температурой имеет место только для абсолютного черного тела. Яркость объекта и распределение энергии по спектру могут не совпадать с кривой, описываемой законом Планка (формула 6.8, рис. 6.2 ). По этой причине температуру, измеряемую пирометром с исчезающей нитью, называют яркостной.

Если в приборе, собранном по схеме, изображенной на рис. 6.10 вместо окуляра установить фотоэлектрический приемник-фотоэлемент, фотодиод или фотоумножитель, - то такое измерительное устройство будет регистрировать световой поток, распределяющийся в определенном телесном угле. Площадь визируемого участка также можно зафиксировать, например, диафрагмой. В этом случае прибор будет измерять силу света объекта с единичной поверхности, то есть яркость. Такие оптические приборы называются яркомерами.

Существует еще одно понятие в неконтактной термометрии - понятие цветовой температуры. Почти все источники света могут характеризоваться длиной волны, на которой наблюдается максимум энергии излучения. Спектральное распределение излучения может не соответствовать формуле Планка (6.8), нов любом случае температуру можно определить, воспользовавшись законом Вина (6.10). Как уже указывалось, так определенная температура получила на практике название цветовой. Особенно часто термином «цветовая температура» пользуются, характеризуя источники света. Если в светотехнике указывается цветовая температура, это означает, что максимум энергии излучения данного источника совпадаете максимумом энергии излучения абсолютно черного тела с такой температурой. В качестве примера приведем значения цветовой температуры для наиболее часто встречающихся источников света (см. табл. 6.1).

Таблица 6.1

Тип источника света Светящийся объект Цветовая температура, К
Источник типа А Лампа накаливания  
Источник типа В Прямое солнечное излучение  
Источник типа С Рассеянное солнечное излучение  
Источник типа D Лампы дневного света - люминесцентные лампы  
D65  
D50  

 







Дата добавления: 2015-12-04; просмотров: 212. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия