Студопедия — Поле бесконечно заряженной нити
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поле бесконечно заряженной нити






Рассмотрим бесконечную нить, несущую заряд, равномерно распределённый по её длине. Заряд, сосредоточенный на бесконечно нити, конечно, тоже бесконечен, и поэтому он не может служить количественной характеристикой степени заряженности нити. В качестве такой характеристики принимается «линейная плотность заряда». Эта величина равна заряду, распределённому на отрезке нити единичной длины:

.

Выясним, какова напряженность поля, создаваемого заряженной нитью на расстоянии а от неё (рис. 1.12).

Рис. 1.12.

Для вычисления напряжённости вновь воспользуемся принципом суперпозиции электрических полей и законом Кулона. Выберем на нити элементарный участок dl. На этом участке сосредоточен заряд dq = t dl, который можно считать точечным. В точке А такой заряд создаёт поле (см. 1.3)

Исходя из симметрии задачи, можно заключить, что искомый вектор напряжённости поля будет направлен по линии, перпендикулярной нити, то есть вдоль оси х. Поэтому сложение векторов напряжённости, можно заменить сложением их проекцией на это направление.

(1.7)

Рис. (1.12 b) позволяет сделать следующие заключения:

(1.8)

Таким образом

. (1.9)

Используя (1.8) и (1.9) в уравнении (1.7), получим

(1.10)

Теперь для решения задачи осталось проинтегрировать (1.10) по всей длине нити. Это означает, что угол a будет меняться от до .

(1.11)

В этой задаче поле обладает цилиндрической симметрией. Напряжённость поля прямо пропорциональна линейной плотности заряда на нити t и обратно пропорциональна расстоянию а от нити до той точки, где измеряется напряжённость.

Лекция 2 «Теорема Гаусса для электрического поля»

План лекции

1.Поток вектора напряженности электрического поля.

2.Теорема Гаусса для электрического поля.

3.Применение теоремы Гаусса для расчёта электрических полей.

3.1. Поле бесконечной заряженной нити.

3.2. Поле бесконечной заряженной плоскости. Поле плоского конденсатора.

3.3. Поле сферического конденсатора.

 

Первую лекцию мы закончили расчётом напряжённости полей электрического диполя и бесконечно заряженной нити. В обоих случаях использовался принцип суперпозиции электрических полей. Теперь обратимся ещё к одному методу вычисления напряжённости, основанному на теореме Гаусса для электрического поля. В этой теореме речь идёт о потоке вектора напряжённости через произвольную замкнутую поверхность. Поэтому прежде чем преступить к формулировке и доказательству теоремы, обсудим понятие «поток вектора».

1. Поток вектора напряжённости электрического поля

Выделим в однородном электрическом поле плоскую поверхность (рис. 2.1.). Эта поверхность — вектор, численно равный площади поверхности D S и направленный перпендикулярно поверхности

(2.1)

Рис. 2.1.

Но единичный нормальный вектор может быть направлен как в одну, так и в другую сторону от поверхности (рис. 2.2.). Произвольно выберем положительное направление нормали так, как это показано на рис. 2.1. По определению потоком вектора напряжённости электрического поля через выделенную поверхность называется скалярное произведение этих двух векторов:

(2.2)

Рис. 2.2.

Если поле в общем случае неоднородно, а поверхность S, через которую следует вычислить поток, не плоская, то эту поверхность делят на элементарные участки , в пределах которых напряжённость можно считать неизменённой, а сами участки — плоскими (рис. 2.3.) Поток вектора напряжённости через такой элементарный участок вычисляется по определению потока

(2.3)

Здесь En = E ∙ cosa — проекция вектора напряжённости на направление нормали . Полный поток через всю поверхность S найдём, проинтегрировав (2.3) по всей поверхности

(2.4)

Рис. 2.3.

Теперь представим себе замкнутую поверхность в электрическом поле. Для отыскания потока вектора напряжённости через подобную поверхность проделаем следующие операции (рис. 2.4.):

1. Разделим поверхность на участки . Важно отметить при этом, что в случае замкнутой поверхности положительной считается только «внешняя» нормаль .

2. Вычислим поток на каждом элементарном участке :

Обратите внимание на то, что вектор «вытекающий» из замкнутой поверхности создаёт положительный поток, а «втекающий» — отрицательный.

3. Для вычисления полного потока вектора напряжённости через всю замкнутую поверхность, все эти потоки нужно алгебраически сложить, то есть уравнение (2.3) проинтегрировать по замкнутой поверхности S

(2.5)

Кружок на знаке интеграл означает, что интегрирование производится по замкнутой поверхности.

Рис. 2.4.

Напомним, что при графическом изображении полей, густота силовых линий в произвольной точке поля числено равна значению напряжённости поля в этой точке. Это означает, что

.

Тогда число силовых линий, пронизывающих поверхность dS, можно записать так

dN = EndS = EdS ∙ cosa

Но ведь это определение потока вектора напряжённости через поверхность dS.

Таким образом, поток вектора напряжённости через поверхность dS численно равен числу силовых линий, пронизывающих эту поверхность (!).

Этот вывод справедлив и для потока электрического поля через замкнутую поверхность: этот поток будет равен алгебраической сумме силовых линий втекающих (–) и вытекающих (+) из замкнутой поверхности.

Теперь обратимся к теореме Гаусса.







Дата добавления: 2015-10-19; просмотров: 7519. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия