Студопедия — Производная скалярного поля по направлению. Градиент
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная скалярного поля по направлению. Градиент






 

Как уже отмечалось, числовые функции нескольких переменных при анализе физических проблем часто называют скалярными полями (поле температур, давлений, электростатического потенциала и т.д.)

Рассмотрим скалярное поле и проследим за тем, как оно изменяется в окрестности произвольной точки по выбранному направлению (рис.4.20.1). Для этого введем вектор , сонаправленный с .

Будем считать, что точка имеет координаты:

x + D x, y + D y, z + D z, тогда

Запишем полное приращение функции:

D u = f (x +D x, y +D y, z +D z)–

f (x, y, z).

Если рассматриваемая функция является дифференцируемой, то согласно формуле Тейлора

(4.20.1)

Величина

(4.20.2)

называется производной скалярного поля по направлению вектора . Она характеризует скорость изменения функции по рассматриваемому направлению.

Для вычисления предела (4.20.2) разделим (4.20.1) на D l и учтем, что в силу условия D = l имеем равенства

Поэтому при D l получим формулу для вычисления производной

(4.20.3)

 

Вектор

(4.20.4)

называется градиентом11 скалярного поля в рассматриваемой точке М (x, y, z).

Если ввести вектор , то из (4.20.3) следует, что

Таким образом, производная скалярного поля по направлению равна проекции градиента на это направление:

(4.20.5)

Выясним теперь, как направлен градиент. Для этого введем так называемые поверхности уровня, т.е. поверхности, на которых значение рассматриваемой функции постоянно:

f (x, y, z) = C (4.20.6)

(вспомните знакомые из физики изотермы, изобары, эквипотенциальные поверхности и т.д.).

Ранее отмечалось, что уравнение касательной плоскости к поверхности z = f (x, y) в точке имеет вид

Если уравнение поверхности задано в неявном виде и оно определяет функцию , то вместо нужно подставить

;

Тогда

или окончательно

(4.20.7)

 
 

Уравнение касательной плоскости к поверхности (4.20.6), очевидно, должно совпадать с (4.20.7), так как наличие константы в правой части (4.20.6) не изменит рассматриваемых частных производных. Поэтому вектор grad u направлен по нормали к поверхности уровня (4.20.6) (нормальный вектор к плоскости (4.20.7) имеет вид

и совпадает с grad u (4.20.4)).

Таким образом, градиент обладает следующими свойствами (рис. 4.20.2):

1) направлен по нормали к поверхности уровня;

2) производная по любому направлению равна проекции градиента на это направление.


10 Точка перегиба считается расположенной на самой кривой в отличие от точки экстремума, расположенной на оси абсцисс. Сама кривая считается гладкой, т.е. направление касательной на ней изменяется непрерывно (проанализировать понятие гладкости кривой самостоятельно).

11 [1] gradiens (лат.) – шагающий, идущий







Дата добавления: 2015-10-18; просмотров: 496. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия