Студопедия — Основные определения. В общем случае сложного сопротивления в стержне возникают все шесть видов внутренних усилий одновременно
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения. В общем случае сложного сопротивления в стержне возникают все шесть видов внутренних усилий одновременно






В общем случае сложного сопротивления в стержне возникают все шесть видов внутренних усилий одновременно. Эти шесть усилий определяем, как обычно, методом сечений и строим эпюры усилий. При определении внутренних усилий используем правила знаков, описанные во вступительной части разд. 5 и поясняемые рис. 5.1. После определения внутренних усилий находим опасные сечения, а в опасных сечениях – опасные точки. Рассмотрим подробно, где расположены опасные точки в двух наиболее часто используемых сечениях: круглом и прямоугольном[10]. Выпишем формулы, необходимые для проверки прочности в этих точках.

Рис. 5.25. Изображение пар сил Мy и Мz в виде векторов

Для определения положения опасных точек в круглом сечении построим эпюры распределения напряжений. Чтобы построить эпюру нормальных напряжений, вызванных двумя изгибающими моментами и , определим направление суммарного изгибающего момента. Изобразим пары и в виде векторов, определяя их направление по правилу правого винта (рис. 5.25). Полный изгибающий момент является равнодействующей этих векторов и изображен на рис. 5.26. Поскольку для круглого сечения любая ось является главной, то в какой бы плоскости ни был приложен изгибающий момент, он вызывает плоский изгиб. Нейтральная линия в этом случае перпендикулярна плоскости изгиба, то есть совпадает с линией действия вектора полного изгибающего момента . На рис. 5.26 показана эпюра нормальных напряжений, вызванных действием изгибающего момента . Кроме того, в сечении возникают нормальные напряжения от продольной силы N и касательные напряжения от крутящего момента . Эпюры распределения этих напряжений показаны на рис. 5.26[11]. Знаки напряжений соответствуют положительным значениям внутренних усилий. Видно, что опасными точками могут быть точки 1, 1¢, в которых действуют максимальные нормальные напряжения от изгиба и продольной силы и максимальные касательные напряжения, вызванные крутящим моментом. Для проверки прочности хрупких материалов важен знак нормальных напряжений (более опасной точкой будет, как правило, точка с растягивающими напряжениями), для пластичных материалов опасной будет точка, где нормальные напряжения от изгиба и продольной силы имеют одинаковые знаки. Опасные точки находятся в " балочном" напряженном состоянии, и проверку прочности в них следует осуществлять по теориям прочности, соответствующим материалу стержня. Приведем условия прочности, справедливые для " балочного" напряженного состояния, по двум наиболее часто используемым теориям:

· для хрупких материалов – теория Мора

(5.30)

где ;

Рис. 5.26. Эпюры распределения напряжений в стержне круглого сечения

 

 

· для пластичных материалов – третья теория прочности

. (5.31)

В формулах (5.30), (5.31) и – напряжения в опасных точках.

В точках 1, 1¢ круглого сечения эти напряжения определяются так:

 

; (5.32)

; (5.33)

; (5.34)

, (5.35)

где ; ; ; . Поясним выбор знака в формуле (5.32). В рассматриваемой задаче в точке 1 складываются растягивающие напряжения от изгиба и продольной силы, в точке 1’ от растягивающих напряжений, вызанных N, вычитаются сжимающие напряжения от М и.

При подборе сечения обычно пренебрегают влиянием продольной силы. В этом случае условия прочности (5.30) и (5.31) для круглого сечения с учетом формул (5.34) и (5.35) можно преобразовать. Теория Мора приобретает такой вид:

, (5.36)

а третья теория прочности приводится к следующему условию:

, (5.37)

где . Из условий прочности (5.36), (5.37) можно найти необходимый момент сопротивления, а далее радиус поперечного сечения. Чтобы учесть продольную силу, немного увеличивают полученное значение радиуса (как правило, достаточно округления в большую сторону), находят напряжения по формулам (5.33)–(5.35) и проверяют прочность с учетом по условиям (5.30) или (5.31).

Рис. 5.27. Эпюры распределения напряжений в стержне прямоугольного сечения

Построим эпюры распределения напряжений от всех усилий в прямоугольном сечении и определим положение опасных точек. Эти эпюры изображены на рис. 5.27, где знаки и направления напряжений соответствуют положительным внутренним усилиям. Из рис. 5.27 следует, что в прямоугольном сечении в общем случае опасными могут быть три группы точек:

· точки 1, 1¢ с максимальными нормальными напряжениями (для хрупких материалов важна не только величина напряжения, но и его знак). Напряжения в них

; (5.38)

Согласно рис. 5.27 в точке 1 складываются растягивающие напряжения от всех усилий (М y, M z и N). В точке 1¢ от сжимающих напряжений, вызванных изгибающими моментами, вычитаются растягивающие напряжения от продольной силы.

· точки 2, 2¢ – в них действуют нормальные напряжения от , максимальные нормальные напряжения от и максимальные касательные напряжения, вызванные крутящим моментом и поперечной силой :

, (5.39)

; (5.40)

· точки 3, 3¢ с нормальными напряжениями от , максимальными нормальными напряжениями от и, кроме того, в этих точках действуют касательные напряжения от кручения и максимальные касательные напряжения, вызванные поперечной силой :

, (5.41)

. (5.42)

В зависимости от величин и знаков внутренних усилий необходимо выбрать самые опасные точки и проверить в них прочность. Знаки " плюс" или " минус" в формулах (5.38)–(5.42) выбираются в зависимости от направления напряжений в рассматриваемой точке. При этом в точках 2, 2¢ или 3, 3¢ хотя бы для одного напряжения ( или ) направления должны совпадать.

В точке 1, где нормальные напряжения от , и имеют одинаковый знак, условие прочности записывается так:

, (5.43)

так как эта точка находится в линейном напряженном состоянии. Для хрупких материалов в правой части неравенства стоит или в зависимости от направления напряжения. Точки 2 (2¢) и 3 (3¢) находятся в " балочном" напряженном состоянии и условие прочности в них записывается по формулам (5.30) или (5.31) в зависимости от материала. Для хрупких материалов наиболее опасными являются точки, в которых действуют растягивающие напряжения, для пластичных материалов это точки с максимальными по модулю нормальными напряжениями.

В формулах (5.38)–(5.42)

; (5.44)

; (5.45)

; (5.46)

; (5.47)

; (5.48)

; (5.49)

; ; ; . Коэффициенты и определяются по таблице и зависят от . В приведенных формулах – меньшая сторона прямоугольника, параллельная оси . Знаки усилий в формулах (5.33)–(5.35) и (5.44)–(5.49) не учитываются.

Подбор размеров прямоугольного сечения производят из условия прочности в угловой точке без учета продольной силы. Перед подбором размеров сечение стержня надо расположить рационально. Если , то наибольшая сторона должна быть перпендикулярна оси . В этом случае ; . В противном случае сторона должна быть расположена параллельно оси , , а . Условие прочности (5.43) в угловой точке без учета записывается следующим образом:

. (5.50)

Зная отношение моментов сопротивления , из (5.50) можно найти необходимую величину момента сопротивления, а далее размеры сечения. Для учета продольной силы обычно округляют полученные размеры в большую сторону и проверяют прочность во всех опасных точках прямоугольного сечения с учетом всех усилий по приведенным выше формулам.







Дата добавления: 2014-11-12; просмотров: 669. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2024 год . (0.032 сек.) русская версия | украинская версия