Студопедия — Диаграмма растяжения низкоуглеродистой стали
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Диаграмма растяжения низкоуглеродистой стали






 

Механические характеристики материалов, т.е. величины, характеризующие их прочность, пластичность, упругость и твердость, а также упругие постоянные Е и , необходимые конструктору для выбора материалов и расчетов проектируемых деталей, определяют механическими испытаниями стандартных образцов из исследуемого материала.

Рассмотрим диаграмму, полученную в процессе наиболее распространенного и важного механического испытания, а именно при статическом нагружении. Испытания на растяжение низкоуглеродистой стали (например стали Ст. З, рис. 2.2).

 

 

 

Рис. 2.2.

 

   

В процессе этого испытания специальное устройство испытательной машины автоматически вычерчивает диаграмму, выражающую зависимость между растягивающей силой и абсолютным удлинением, в координатах (F, ). Для изучения механических свойств материала независимо от размеров образца применяется диаграмма в координатах «напряжение – относительное удлинение» Эти диаграммы отличаются друг от друга лишь масштабами.

Диаграмма растяжения низкоуглеродистой стали, представлена на рис. 2.3, она имеет следующие характерные точки:

Точка А соответствует пределу пропорциональности.

Пределом пропорциональности называется то наибольшее напряжение, до которого деформации растут пропорционально нагрузке, т. е. справедлив закон Гука (для стали Ст. З 200 МПа).

Точка А практически соответствует и другому пределу, который называется пределом упругости.

Пределом упругости называется то наибольшее напряжение, до которого деформации практически остаются упругими.

Точка С соответствует пределу текучести.

Пределом текучести называется такое напряжение, при котором в образце появляется заметное удлинение без увеличения нагрузки (для стали Ст.3 ).

Предел текучести является основной механической характеристикой при оценке прочности пластичных материалов.

Точка В соответствует временному сопротивлению или пределу прочности.

Временным сопротивлением называется условное напряжение, равное отношению максимальной силы, которую выдерживает образец, к первоначальной площади его поперечного сечения (для стали Ст.З ).

При достижении временного сопротивления на растягиваемом образце образуется местное сужение – шейка, т. е. начинается разрушение образца.

В определении временного сопротивления говорится об условном напряжении, так как в сечениях шейки напряжения будут больше.

Предел прочности является основной механической характеристикой при оценке прочности хрупких материалов.

Точка М соответствует напряжению, возникающему в наименьшем поперечном сечении шейки в момент разрыва. Это напряжение можно назвать напряжением разрыва.

С помощью диаграммы растяжения в координатах определяем модуль упругости первого рода:

 

,

 

где - масштаб напряжений; - масштаб относительных удлинений; – угол, который составляет с осью абсцисс прямую линию диаграммы до предела пропорциональности.

Для большинства углеродистых сталей предел пропорциональности можно приблизительно считать равным половине временного сопротивления.

F
 
B
K
T
C
A
M
 
 

 

 


Рис. 2.3.


 

Деформация образца за пределом упругости состоит из упругой и остаточной, причем упругая часть деформации подчиняется закону Гука и за пределом пропорциональности (рис. 2.3). Если нагрузку снять, то образец укоротится в соответствии с прямой TK диаграммы; при повторном нагружении того же образца его деформация будет соответствовать диаграмме KTBM. Таким образом, при повторном растяженииобразца, ранее нагруженного выше предела упругости, механические свойства материала меняются, а именно: повышается прочность (предел упругости и пропорциональности) и уменьшается пластичность. Это явление называется наклёпом.

Степень пластичности материала может быть охарактеризована (в процентах) остаточным относительным удлинением и остаточным относительным сужением шейки образца после разрыва:

 

 

где - первоначальная длина образца; - длина образца после разрыва; - первоначальная площадь поперечного сечения образца; - площадь наименьшего поперечного сечения шейки образца после разрыва.

Чем больше и тем пластичнее материал. Материалы, обладающие очень малой пластичностью, называют хрупкими. Диаграмма растяжения хрупких материалов не имеет площадки текучести, у них при разрушении не образуется шейка.

Диаграмма сжатия стали, до предела текучести совпадает с диаграммой растяжения, причем результаты испытаний сталей на растяжение и сжатие равноценны.

Результаты испытаний на растяжение и сжатие чугуна значительно отличаются друг от друга; предел прочности при растяжении в 3, 5 раз ниже, чем при сжатии. Иными словами, чугун значительно хуже работает на растяжение, чем на сжатие.

Отметим, что ярко выраженную площадку текучести имеют, только диаграммы растяжения низкоуглеродистой стали и некоторых сплавов цветных металлов.

Для пластичных материалов, диаграммы растяжения, которых не имеют ярко выраженной площадки текучести (средне и высокоуглеродистые, легированные стали) или совсем ее не имеют (медь, дюралюминий), вводится понятие условного предела текучести - напряжения, при котором относительное остаточное удлинение образца равно 0, 2 %.

Следует отметить, что деление материалов на пластичные и хрупкие условно, так как в зависимости от характера действующей нагрузки хрупкий материал может получить пластические свойства, и наоборот, пластичный материал приобретает свойства хрупкого. Так, например, деталь из пластичного материала при низкой температуре или при ударной нагрузке разрушается без образования шейки, как хрупкая.

 

 







Дата добавления: 2014-11-10; просмотров: 4011. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия