Студопедия — Физический маятник
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физический маятник






Физическим маятником называют твердое тело, способное совершать колебания вокруг некоторой оси, не проходящей через его центр масс. В положении равновесия центр масс маятника (точка С) находится с точкой подвеса маятника О на одной вертикали (рис. 13).

Колебания физического маятника, так же как и математического происходят под действием силы тяжести. При отклонении маятника от положения равновесия на угол j возникает вращающий момент силы тяжести относительно горизонтальной оси, проходящей через точку О, равный

,  

где – радиус вектор, проведенный из точки О в точку приложения силы тяжести, т.е. до центра масс тела (точка С).

 

Рис. 13. Физический маятник

Модуль момента силы тяжести равен

, (4)

где l – расстояние от точки подвеса до точки приложения силы тяжести, т.е. до центра масс тела.

Из уравнения динамики вращательного движения тела следует, что момент силы тяжести равен произведению момента инерции тела на его угловое ускорение, т.е.

, (5)

где I – момент инерции тела относительно оси вращения, e – угловое ускорение. Знак минус означает, что направление вектора момента силы тяжести противоположно направлению вектора углового ускорения.

Учитывая, что , уравнение (5) с учетом (4) можно записать в виде

.  

Это уравнение приводится к следующему виду:

.  

Введем обозначение . При малых углах отклонения можно считать, что . Тогда дифференциальное уравнение колебания физического маятника (6) запишется как

.

Решение этого уравнения имеет вид

,

где – максимальный угол отклонения маятника от положения равновесия называемой амплитудой гармонических колебаний, – начальная фаза колебаний; – циклическая частота.

Поскольку , то период колебания физического маятника равен

.

Для математического маятника, момент инерции которого равен

,

выражение для периода колебаний будет следующим

.

Из сопоставления последних двух формул получается, что математический маятник с длиной

(6)

будет иметь такой же период колебаний, как и данный физический маятник. Эту величину называют приведенной длиной физического маятника.

Точку на прямой, соединяющей точку подвеса с центром масс, лежащую на расстоянии приведенной длины от оси вращения, называют центром качания физического маятника (точка на рис. 13). При переносе точки подвеса в центр качания период колебания маятника будет прежним. Точка подвеса и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания, и период колебаний физического маятника не изменится.

Обозначим момент инерции физического маятника относительно оси проходящий через центр масс за . Тогда, используя теорему Штейнера, получим

. (7)

Подставив в уравнение (6) момент инерции, определяемый выражением (7) получим следующее выражение:

. (8)

Из уравнения (8) видно, что приведенная длина всегда больше l, так что точка подвеса O и центр качания лежат по разные стороны от центра масс C. Зная период колебания T, массу маятника m и приведенную длину, можно рассчитать момент инерции I физического маятника

(9)

или

, (10)

где l – расстояние от точки подвеса до центра масс.







Дата добавления: 2014-11-10; просмотров: 2034. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия