Студопедия — Движение по окружности. Движение тела по окружности является частным случаем криволинейного движения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Движение по окружности. Движение тела по окружности является частным случаем криволинейного движения






Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения удобно рассматривать угловое перемещение Δ φ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением

  Δ l = R Δ φ.  

При малых углах поворота Δ l ≈ Δ s.

Рисунок 1.6.1. Линейное и угловое перемещения при движении тела по окружности.

Угловой скоростью ω тел в данной точке круговой траектории называют предел (при Δ t → 0) отношения малого углового перемещения Δ φ к малому промежутку времени Δ t:

 

 

 

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

  υ = ω R.  

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

   

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

   

Для доказательства этого выражения рассмотрим изменение вектора скорости за малый промежуток времени Δ t. По определению ускорения

   

Векторы скоростей и в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υ A = υ B = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

   

 

Рисунок 1.6.2. Центростремительное ускорение тела при равномерном движении по окружности.

При малых значениях угла Δ φ = ω Δ t расстояние | AB | =Δ s ≈ υ Δ t. Так как | OA | = R и | CD | = Δ υ, из подобия треугольников на рис. 1.6.2 получаем:

   

При малых углах Δ φ направление вектора приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δ t → 0, получим:

 

 

 

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

   

где – радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная) составляющая ускорения (см. §1.1):

 

 

 

В этой формуле Δ υ τ = υ 2 – υ 1 – изменение модуля скорости за промежуток времени Δ t.

Направление вектора полного ускорения определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Рисунок 1.6.3. Составляющие ускорения и при неравномерном движении тела по окружности.

Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υ x и υ y (рис. 1.6.4).

При равномерном вращении тела величины x, y, υ x, υ y будут периодически изменяться во времени по гармоническому закону с периодом

   

 

Рисунок 1.6.4. Разложение вектора скорости по координатным осям.

Глава 1. Механика







Дата добавления: 2014-12-06; просмотров: 788. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия