Студопедия — Интегрирование по частям
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование по частям






Пусть и – дифференцируемые функции. Известно, что дифференциал произведения вычисляется по формуле: . Проинтегрируем данное равенство . Используя свойства интеграла, будем иметь , отсюда

.

Данная формула называется формулой интегрирования по частям. Эта формула применяется чаще всего к интегрированию выражений, которые можно представить в виде произведения двух сомножителей и , причем за принимают такой множитель, от которого можно найти интеграл.

Основные виды интегралов, которые берутся по частям: – многочлен степени (см. таблицу 2).

Таблица 2

I
II
III В данных интегралах за можно принять любую функцию. Интегрируют два раза и приводят подобные интегралы.
IV
V

Пример 10. Найти интеграл .

Решение.

тогда

,

Пример11. Найти интеграл .

Решение.

, , тогда ,

Пример12. Найти интеграл .

Решение.

тогда ,

Получили интеграл такого же вида. Еще раз необходимо применить интегрирование по частям: , , тогда

,

Получили интеграл первоначального вида. Преобразуем

.

Из данного равенства выразим искомый интеграл

,

отсюда

.

Интегралы такого вида называются круговыми.

Пример 13. Найти интеграл .

Решение.

тогда ,

Пример 14. Найти интеграл .

Решение.

тогда ,

.

Некоторые другие виды интегралов также можно находить интегрированием по частям.

С помощью формулы интегрирования по частям можно найти интеграл вида . Рассмотрим данный интеграл

Разобьем на два интеграла Первый интеграл оставим без изменений, а во втором интеграле , , тогда ,

Преобразуем

В результате применения метода интегрирования по частям, получили интеграл, в котором подынтегральная функция имеет степень, меньшую на единицу, чем в исходном интеграле:

. (1)

Данная формула называется рекуррентной формулой. Ее применяют до тех пор, пока не получат табличный интеграл вида .

Пример 15. Найти интеграл .

Решение. Применим к данному интегралу рекуррентную формулу: , .

Еще раз применим рекуррентную формулу:

 







Дата добавления: 2015-10-12; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия