Студопедия — Теоретические сведения. где – непрерывная функция
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. где – непрерывная функция






Пусть дано уравнение

, (3.1)

где – непрерывная функция. Требуется вычислить действительный корень уравнения, находящийся на отрезке . Приводим заданное уравнение к эквивалентному виду

, (3.2)

где – некоторая непрерывная на отрезке функция.

Выбираем произвольное и подставляем его в правую часть равенства (3.2):

.

Аналогично получаем итерационную последовательность:

;

;

…………..

.

Доказано, что если итерационная последовательность , , ,…, ,… сходится, то её пределом является корень уравнения (3.2), а значит, и корень уравнения (3.1), так как уравнения (3.1) и (3.2) равносильны.

Для сходимости итерационного процесса достаточно исходное уравнение привести к виду так, чтобы выполнялось условие

, (3.3)

где . При этом итерационная последовательность сходится независимо от выбора .

Итерации имеют геометрическую интерпретацию. Решение уравнения (3.2) является абсциссой точки пересечения прямой y = x и кривой y = φ(x). Геометрически видно, что если в окрестности решения выполняются неравенства 0 < φ’(x) ≤ М < 1, то последовательность {xK} монотонно сходится к , причем с той стороны, с которой расположено начальное приближение (рис. 3.1).

 

Рис. 3.1. Приближение к корню с одной стороны

 

В случае −1 < −M ≤ φ’(x) < 0 последовательные приближения расположены поочередно с разных сторон от решения (рис. 3.2).

 

Рис. 3.2. Приближение к корню с разных сторон

 

Уравнение можно преобразовать к виду разными способами, лишь бы функция удовлетворяла условию (3.3). Например, уравнение заменяем равносильным . В этом случае . Параметр выбираем так, чтобы ½ при .

Пример 1. Привести уравнение к виду, пригодному для применения метода итераций. Единственный действительный корень заданного уравнения находится на отрезке , так как , .

Приводим исходное уравнение к виду .В этом случае . Тогда , при .

Таким образом, достаточное условие сходимости итерационного процесса выполняется. Метод итераций применим для решения полученного уравнения. Выбираем произвольное , например, , и начинаем процесс метода итераций.

Пример 2. Привести уравнение к виду, пригодному для применения метода итераций.

Единственный корень заданного уравнения находится на отрезке . Рассмотренный в примере 1 способ в данном случае неприменим, так как при этом не удовлетворяется достаточное условие сходимости итерационного процесса. Заменяем исходное уравнение равносильным:

.

В этом случае

, .

Параметр находим из условия ê при , т.е. или при . Отсюда . Полагаем, например, . Исходное уравнение преобразуем к виду

,

причем при .

Выбираем произвольное . Пусть , вычисляем . Подставляя в правую часть равенства, получаем и т.д. Вычисления производим до тех пор, пока выполнится неравенство .

Скорость сходимости итерационного процесса определяется неравенством

,

где – точное решение уравнения.

Оценка погрешности метода простой итерации записывается в виде

,

где – заданная точность решения. В частности, при и величина будет приближенным значением корня с точностью до , т.е. .







Дата добавления: 2015-10-02; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия