Студопедия — Дифференциальные уравнения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения






 

Задача 1. Найти общий интеграл дифференциального уравнения (ответ представить в виде )

Решение:

Отсюда

 

Задача 2. Найти общий интеграл дифференциального уравнения

Решение:

Произведем замену переменной

Отсюда

Так как , то получаем

 

Задача 3. Найти общий интеграл дифференциального уравнения

Решение:

Найдем точку пересечения прямых и .

Отсюда

Перенесем начало координат в точку пересечения , т.е. сделаем замену ,

Таким образом получим

Данное уравнение однородное, поэтому сделаем замену

Отсюда

Таким образом

Сделаем обратную замену

 

Задача 4. Найти решение задачи Коши

,

Решение:

Дифференциальное уравнение является линейным. Сначала решаем уравнение

В исходном уравнении произведем замену ,

Таким образом общее решение дифференциального уравнения.

Так как , то , поэтому частное решение будет равно

 

Задача 5. Решить задачу Коши

,

Решение:

Преобразуем данное уравнение, имея ввиду, что . Таким образом

Получившееся уравнение является линейным. Сначала решаем уравнение

В уравнении произведем замену ,

Решаем интегралы методом интегрирования по частям

Получаем

Таким образом общее решение дифференциального уравнения. Так как , то , поэтому частное решение будет равно

 

Задача 6. Найти решение задачи Коши

,

Решение:

Преобразуем данное уравнение, умножив обе части на , получим .

Сделаем замену , тогда , получим .

Получившееся уравнение является линейным. Сначала решаем уравнение

В уравнении произведем замену ,

Таким образом общее решение дифференциального уравнения. Так как , то , поэтому частное решение будет равно

 

Задача 7. Найти общий интеграл дифференциального уравнения

Решение:

Проверим, является ли данное ДУ уравнением в полных дифференциалах:

,

,

Так как , то уравнение является уравнением в полных дифференциалах и имеет вид

,

отсюда

Так как , то

значит общий интеграл дифференциального уравнения будет равен

 

Задача 10. Найти общее решение дифференциального уравнения

Решение:

Сделаем замену переменной ,

Таким образом

Значит

Отсюда

Таким образом - общее решение дифференциального уравнения, где C, B, A – произвольные константы.

 

Задача 11. Найти решение задачи Коши

, ,

Решение:

Произведем замену переменной

Таким образом

Значит

Так как , , то

Таким образом

Так как , то

Значит

 

Задача 12. Найти общее решение дифференциального уравнения

Решение:

Данное дифференциальное уравнение является линейным неоднородным. Сначала найдем общее решение однородного уравнения с помощью характеристического уравнения

Отсюда общее решение однородного уравнения будет выглядеть как

Частное решение будем искать в виде

Отсюда

Подставим найденные значения в исходное уравнение

Тогда общее решение исходного линейного неоднородного дифференциального уравнения будет

 

Задача 13. Найти общее решение дифференциального уравнения

Решение:

Данное дифференциальное уравнение является линейным неоднородным. Сначала найдем общее решение однородного уравнения с помощью характеристического уравнения

Отсюда общее решение однородного уравнения будет выглядеть как

Частное решение будем искать в виде

Подставим найденные значения в исходное уравнение

Частное решение будет равно

Тогда общее решение исходного линейного неоднородного дифференциального уравнения будет

 

Задача 14. Найти общее решение дифференциального уравнения

Решение:

Данное дифференциальное уравнение является линейным неоднородным. Сначала найдем общее решение однородного уравнения с помощью характеристического уравнения

Отсюда общее решение однородного уравнения будет выглядеть как

Частное решение будем искать в виде

Подставим найденные значения в исходное уравнение

Частное решение будет равно

Тогда общее решение исходного линейного неоднородного дифференциального уравнения будет

 

Задача 15. Найти общее решение дифференциального уравнения

Решение:

Данное дифференциальное уравнение является линейным неоднородным. Сначала найдем общее решение однородного уравнения с помощью характеристического уравнения

Отсюда общее решение однородного уравнения будет выглядеть как

Найдем частное решение неоднородного уравнения, применив принцип суперпозиции.

Разбиваем правую часть на слагаемые:

Найдем частные решения для каждого слагаемого

Ищем решение в виде

Значит

Ищем решение в виде

Значит

Согласно принципу суперпозиции частное решение неоднородного уравнения будет равно сумме частных решений для каждого слагаемого:

Тогда общее решение исходного линейного неоднородного дифференциального уравнения будет

 

Задача 16. Найти решение задачи Коши

, ,

Решение:

Данное дифференциальное уравнение является линейным неоднородным. Сначала найдем общее решение однородного уравнения с помощью характеристического уравнения

Отсюда общее решение однородного уравнения будет выглядеть как

Найдем частное решение неоднородного дифференциального уравнения, используя метод вариации произвольных постоянных

Положим , тогда

Подставим полученные значения в исходное уравнение

Таким образом получаем систему уравнений

Выразим через с помощью первого уравнения данной системы

Используя второе уравнение системы, получим

Находим u

Подставим u и v в выражение для y

Исходя из начальных условий , получаем

Отсюда решение задачи Коши будет таким

 







Дата добавления: 2015-10-02; просмотров: 796. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия