Студопедия — С есть не-С
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

С есть не-С






Тогда само физическое противоречие или несовместимость взаимоисключающих требований для научных систем может быть сформулировано следующим образом: Чтобы с позиций существующей парадигмы По объяснить факт Ф1, исследуемый объект О должен обладать свойством С, но, чтобы объяснить аномальный факт Ф2, объект О должен обладать свойством не-С.

= ФП = ФН

Существует ряд приемов, которые легко разрешают такие противоречия[5],[6],[7].

Физическая несовместимость или противоречиетакже возникает при развитии технических систем. Она отражает требования к одной и той же части системы или ее оперативной зоне выполнить условия задачи и тре­бования сохранить возможность выполнять функцию цели.Формально она может быть выражена следующим образом: Для выполнения действия Д1 объект А должен обладать свойством С, а для выполнения действия Д2 объект А должен обладать свойством С2 (не-С).

Для реализации главной полезной функции цели (ГПФ) системы, объект А для выполнения действия Д1 должен обладать свойством С, а для реализации новых условий функционирования (УФ), объект А для выполнения действия Д2 должен обладать свойством не-С. Как видно из формул физических противоречий, они практически не отличаются друг от друга.

 

 

Развитие научных, технических и других иерархических систем происходит по определенным закономерностям, которые отражают общие законы познания и развития наших представлений об окружающем мире[8].

Анализ огромного массива информации показывает, что в своем развитии системы (научные, технические, социальные и т.д.) проходят четыре этапа [9]: 1. поиск состава (из каких элементов должна состоять система, чтобы выполнить заданную ГПФ?); 2. поиск структуры (как должны быть расположены эти элементы, чтобы выполнять свою ГПФ?); 3. динамику (каким свойство должна обладать система (процесс) или ее (его) часть, чтобы легко адаптироваться к меняющейся окружающей ее среде – природной или технической?); 4. эволюцию или саморазвитие. Чем выше уровень развития системы, тем она становится более управляемой и, в итоге, переходит на уровень самоуправления, самоорганизации. Самым продолжительным этапом, особенно для техники, является этап динамизации, когда систему адаптируют к условиям, в которых она должна функционировать.

Развитие систем проходит три стадии: синтез системы, адаптация к окружающей и внутренней среде, саморазвитие ( схема нарис. 5 ). При этом система стремится к достижению максимального эффекта на пути реализации идеального конечного результата (ИКР).

Рассмотрим два примера: из техники и науки.

Пример 1: Многоэтажное здание – свечка: состав - набор различных помещений, которые могут располагаться друг над другом и конструктивные элементы; идеальная структура, с точки зрения прочности конструкции, удобства ее монтажа, экономичности средств и материалов, - это повторяющиеся друг над другом этажи с одинаковым расположением помещений и конструкций; в сейсмических районах есть опасность разрушения конструкции от поперечных волн; увеличение жесткости конструкции за счет антисейсмических поясов не решает до конца проблему; с позиции этапа динамизации систем, здание на уровне фундамента, т.е. там, где оно испытывает наибольшее воздействие от землетрясения, нужно заранее «сломать», т.е. отсоединить фундамент от остальной части и соединить их подвижными связями, которые не будут передавать колебания верхней части здания, а, следовательно, разрушения не произойдет; переход к зданиям-трансформерам, меняющим свою структуру в зависимости от назначения здания, а в дальнейшем переход к саморазвитию по заданным программам.


 

ЧЕТЫРЁХЭТАПНАЯ ИЕРАРХИЯ ЗАКОНОВ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ.

 

Рис. 5. Три стадии четырех этапов проявления законов развития технических систем

 


Другой пример развития представлений о природном объекте из физики. Вначале представлялось, что атомы являются неделимыми частицами (Демокрит) - первокирпичиками материи. Затем выяснилось, что все вещества состоят из разных атомов. Далее выясняется, что они могут создавать друг с другом структурные образования (Зеленин) – молекулы. Больше того, они могут адаптироваться к определенным условиям и выполнять различные дополнительные транспортные функции (гемоглобин), т.е. становиться динамичными. И, наконец, они могут эволюционировать ( молекула ДНК).

Следует обратить внимание на то, что при этом изменились лишь наши представления о материи, о ее объектах, их модели, но сама материя и ее объекты не изменились, а уже были такими, какими мы их познали.

Пример 2. На первом этапе развития науки на основе наблюдений формируются представ-ления о том, что такое Космос, мир, атом, т.е. об их «составе» или компонентах: мир — это Земля, вращающиеся вокруг неё планеты, Солнце и небесная твердь с неподвижными звёздами. На начальных этапах познания компоненты мира, как правило, жёсткие однородные образования, связанные между собой жёсткими связями. Постепенно эти связи заменяют на подвижные, динамичные, изменяющиеся во времени и пространстве. Сами объекты исследования постепенно приобретают признаки неоднородности их форм, анизотропности (атомы имеют разную форму, при соединении образуют разные вещества). Затем идёт формирование представлений о структуре мира: Земля — центр Вселенной и все вращается вокруг нее; Солнце в центре и вокруг него вращаются планеты и сама Земля, а также небесная твердь; мир состоит из множества миров похожих на наш. Наконец, мир — это Вселенная, где всё находится в движении, т.е. объект познания становится динамичным и адаптивным к конкретным условиям. С проникновением «вглубь» объекта, выясняется, что он значительно усложняется за счёт выявления у него ряда подсистем и, в то же время, идеализируется, за счёт замещения и выполнения подсистемами по совместительству ряда функций, в силу наличия у них соответствующих совместимых друг с другом качеств и свойств. При этом степень неоднородности объектов исследования по всем качествам и свойствам возрастает, а сам объект эволюционирует во времени и пространстве. Примером тому служит развитие представлений об атоме.

Рассмотрим этот процесс с позиций четырехэтапного развития.

 







Дата добавления: 2015-09-04; просмотров: 313. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия