Студопедия — Идентификация объекта управления
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Идентификация объекта управления






Под идентификацией объектов понимается построение их математических моделей в результате статистической обработки экспериментальных данных, полученных при функционировании объекта. Если априорная информация об идентифицируемом объекте позволила выбрать структуру модели (общий вид математических соотношений, связывающих входы и выходы) и задача идентификации состоит в определении параметров модели (коэффициентов усиления, постоянных времени и т.п.), то задачу идентификации называют задачей идентификации в узком смысле или оцениванием параметров.

Если же и структуру, и параметры модели предстоит установить в процессе идентификации, то речь идет об идентификации в широком смысле слова. В дальнейшем, говоря об идентификации, будем иметь в виду оценивание параметров.

Одним из наиболее распространенных методов идентификации является метод наименьших квадратов (МНК), предложенный К. Гауссом.

В данном разделе разработается для каждого из возможных вариантов структуры объекта программы, моделирующие изменение выхода объекта yм(i) при известном входном сигнале u(i). При одном и том же u(i) последовательность yм(i) зависит от вектора параметров А модели объекта. В состав вектора А входят коэффициент усиления К и постоянные времени Тj модели объекта. Имея значения u(i), y(0) и вектор A параметров объекта, можно рассчитать модельное значение выхода yM(i). В общем случае yM(i) ≠ y(i), так как модель всегда лишь приближённо отражает свойства реального объекта. Кроме того, отклонение модельного значения выхода от экспериментального может быть вызвано разной структурой модели и вектора параметров A.

В процессе идентификации объекта вектор A стремятся выбрать так, чтобы последовательность yM(i) была как можно ближе к экспериментальным значениям y(i). В качестве меры близости (критерия идентификации) чаще всего выбирают функционал F, представляющий собой сумму квадратов разностей (невязок) между модельными и наблюдаемыми значениями

(2.1)

N – дискретное время моделирования.

При этом в качестве оценки неизвестных параметров A объекта целесообразно выбирать значение , минимизирующее F: . Полученная таким образом оценка A называется оценкой метода наименьших квадратов (МНК–оценкой).

Процедура идентификации выполняется для каждого возможного варианта структуры объекта. В качестве модели объекта окончательно принимается та структура и тот набор параметров А, которые обеспечивают после минимизации наименьшее значение F.

Рассмотрим обе модели.

 

Модель 1.

 

Рис.2.1 Схема для 1-ой модели

Рис.2.2 Графики y(t), и ym(t) до оптимизации параметров

F=82.34, K=1, T1=1, T2=1.

Рис.2.3 Графики y(t), и ym(t) после оптимизации параметров

F=0.005026 K=1.2748, T1=12.1222, T2=8.6656.

Рис.2.4 Графики y(t), и ym(t) до оптимизации параметров

F=3427 K=10, T1=10, T2=10.

Рис.2.5 Графики y(t), и ym(t) после оптимизации параметров

F=0.002955 K=1.2694, T1=12.0704, T2=8.5388.

Рис.2.6 Графики y(t), и ym(t) до оптимизации параметров

F=1056 K=15, T1=2, T2=7.

Рис.2.7 Графики y(t), и ym(t) после оптимизации параметров

F=0.001376 K=1.2673, T1=12.4740, T2=8.5474.

 

Модель 2.

 

Рис.2.8 Схема для 2-ой модели

Рис.2.9 Графики y(t), и ym(t) до оптимизации параметров

F=40.79 K=1, T1=1, T2=1.

Рис.2.10 Графики y(t), и ym(t) после оптимизации параметров

F=0.21226 K=1.1969, T1=3.8161, T2=3.8161.

Рис.2.11 Графики y(t), и ym(t) до оптимизации параметров

F=17.03 K=2, T1=10, T2=3.

Рис.2.12 Графики y(t), и ym(t) после оптимизации параметров

F=0.2509 K=1.3388, T1=8.5928, T2=1.2483.

Рис.2.13 Графики y(t), и ym(t) до оптимизации параметров

F=324.2 K=5, T1=7, T2=12.

Рис.2.14 Графики y(t), и ym(t) после оптимизации параметров

F=0.2789 K=1.3458, T1=1.1887, T2=8.7090.

Рис.2.15 Графики y(t), и ym(t) до оптимизации параметров

F=3.744 K=1.5, T1=2, T2=6.

Рис.2.16 Графики y(t), и ym(t) после оптимизации параметров

F=0.03135 K=1.2367, T1=2.0893, T2=6.0743.

 

После проведения оптимизации получил значения функционалов и коэффициентов моделей объекта. Модель 1: имеет наименьшее значение функционала F=0.01376 с коэффициентами K=1.2673, T1=12.4740, T2=8.5474. Модель 2: имеет наименьшее значение функционала F=0.03135 с коэффициентами K=1.2367, T1=2.0893, T2=6.0743.

Для проведения моделирования объекта рациональнее выбрать первую модель, так как у нее меньший критерий идентификации, то есть модель будет выглядеть:


Заключение

В курсовом проекте моделировал работа контура регулирования. В первой части выполнили моделирование посредством программы Matlab и Simulink. Получили последовательности значений управляющего сигнала u(t) с выхода регулятора и выходного сигнала контура y(t). Построилb графики этих сигналов.

Во второй части проекта идентифицировали две структуры объекта, пытаясь найти их параметры через найденные последовательности сигналов u(t) и y(t). В итоге, в результате идентификации объекта управления выяснили, что объект управления лучше аппроксимирует передаточная функция , так как она после минимизации обеспечивает наименьшее значение функционала F=0.001376.

 

 








Дата добавления: 2015-09-04; просмотров: 539. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.028 сек.) русская версия | украинская версия