Студопедия — Дисперсия (дискретной ) случайной величины.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсия (дискретной ) случайной величины.






Опр.: Пусть закон распределения случ. величины Х имеет вид:

Х:

xi x1 x2 xk
pi p1 p2 pk

Дисперсией D(X)- этой случ. величины называется число, вычисл. по ф-ле: Неформально: Дисперсия случ. величины яв-ся мерой разброса значений этой случ. величины около её мат. ожидания. Св-ва дисперсии: 1)D(С)=0, С- пост. случ. величина. 2)D(aX)=aв квадрате×D(X). 3)Пусть случ. величины X иY-незави-симы =>D(X±Y)=D(X)+D(Y). 4)D(X)=M(X в квадрате) – М в квадрате(Х). 5)Пусть случ. величины Х1,Х2,…Хn- независимы и D(X1)=…=D(Xn)=s в квадрате.; тогда D((x1+…+xn)/n)=(s в квадрате)/n). Замечание: – назыв. среднеквадратическим отклонением случ. величины X и часто обозначается через s(сигма). Теорема: Пусть случ. величина Х биномиально распределена с параметрами n и p, тогда M(X)=np; D(X)=npq; q=1-p; M(X/n)=p; D(X/n)=(pq)/n. Док-во: Пусть Х- число наступившего события А в n повторн. независ. исп-ях в каждом из которых соб А наступает с вер-тью р => Х=Х1+Х2+…+Хn,где Xi- число наступ-его соб-я А в i испытаний (1£i£n). Х1,Х2,…Хn– независ. и одинаково распределены. 1£i £ n.

 

Xi Xj    
Pj q p

M(Xi)=0×q+1×p=p.;

M(X)=M(X1+…+Xn)=M(X1)+…+M(Xn)=p+…+p=np. D(X)=D(X1+…+Xn)=D(X1)+…+D(Xn)=pq+..+pq=npq. Теорема доказана. Пример: Пусть Х-бином. Распред-а n=3, p=0,8; M(X)=3×0,8=2,4; D(X)=3×0,8×0,2=0,48.







Дата добавления: 2015-08-12; просмотров: 383. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия