Студопедия — Вихревые расходомеры с прецессией воронкообразного вихря
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вихревые расходомеры с прецессией воронкообразного вихря






(с закрученным потоком)

В корпусе 1 преобразователя этих расходомеров установлено устройство 2, состоящее из направляющих пластин закручивающих поток, направляемый через короткую цилиндрическую насадку или участок трубы в расширенную часть.

В последней вращающийся поток принимает воронкообразную форму, а его ось, вокруг которой вращается ядро вихря, сама вращается вокруг оси трубопровода. При этом давление на верхней поверхности вихря пульсирует синхронно с угловой скоростью вращения ядра вихря, пропорциональной линейной скорости потока или объемному расходу. Для преобразования частоты пульсаций давления или скорости в измерительный сигнал (для определения частоты прецессий, проходящих через определенную точку трубопровода) применяют пьезоэлементы, термисторы или полупроводниковые термоанеометры 3. На выходе расходомера установлен механический струевыпрямитель 4, устраняющий вращение потока. Процесс преобразования проходит в два этапа, на первом этапе происходит преобразование объемного расхода потока в частоту прецессии воронкообразованого вихря, а на втором – происходит преобразование этой частоты с электрической сигнал.

Недостатки, к ним следует отнести: ограничение по числу Рейнольдса (Re 104) и основные погрешности в % 0,5…2,5.

Погрешность вихревых расходомеров при измерении расхода газа значительно выше, чем при измерении расхода жидкости. Для уменьшения этого эффекта необходимо в формулу для определения расхода или количества газа ввести поправочный коэффициент, учитывающий расширение – сжатие газа в зависимости от его свойств и условий течения. С целью снижения погрешности измерений в вихревых расходомерах не рекомендуется работать на частоте близкой к частоте срыва вихрей.

Достоинства - присутствие в измеряемой среде конденсата, твердых частиц не влияет на достоверность показаний прибора, другое преимущество связано с тем, что диапазон измерений достаточно широк – (от 0,4 до 40000) м3/ч.

 

 

Кориолисовые расходомеры и плотномеры

В приборах использующие принцип Кориолиса предназначены для прямого измерения расхода, плотности, температуры, вычисления расхода жидкостей газов и взвесей в реальном времени.

Кориолисовый расходомер состоит из датчика расхода и измерительного преобразователя. Датчик преобразует расход и плотность среды, а также температуру сенсорных трубок в электрические сигналы. Электронный преобразователь – это устройство, состоящее из измерительного модуля (ИМ) и микропроцессорного модуля (МП). Измерительный модуль конвертирует полученную от датчика информацию в цифровую форму удобную для обработки на МП, а микропроцессорный модуль выполняет функции формирования и преобразования сигналов от ИМ в окончательные сигналы: импульсные, частотные, цифровые, токовые или HART. Кроме этих функций МП осуществляет визуализацию полученных результатов измерений на экране дисплея.

Принцип работы кориолисового расходомера состоит в том, что поток жидкости проходит через датчик по двум симметричным изогнутым измерительным трубкам, которые колеблются с определенной частотой.

 

а) б) в)

 

 

Рис. 8. Общий вид кориолисового расходомера:

а) Колебания трубки при отсутствии движения измеряемой среды;

б) Распределение сил действующих на трубку при движении вверх;

в) Распределение пары сил, приводящих к закручиванию трубки.

 

Так как датчик состоит из двух кольцеобразных трубок, то входной поток делится на две равные части и направляется в колеблющиеся трубки датчика. Форма колебания одной из трубок при отсутствии движения измеряемой среды показана на рис. 8.а.

Каждая трубка приводится в колебательное движение электромагнитной катушкой расположенной в центре изгиба трубки. Колебания трубки подобны колебанию камертона и имеет амплитуду менее 1 мм и частоту в диапазоне 80 - 100 Гц.

При перемещении измеряемой среды, проходящей через трубку, формируется вертикальная составляющая движения вибрирующей трубки. Процесс распределения сил действующих на трубку при вынужденном движении вверх показан на рис. 8.б.

Измерительной среде проходящей через трубку, придается вертикальная составляющая движения вибрирующей трубки. При движении трубки вверх во время первой половины цикла колебания жидкость втекающая в трубку, создает сопротивление движению вверх, давя трубку вниз. Поглотив вертикальный импульс при движении вокруг изгиба трубки жидкость, вытекающая из трубки, сопротивляется уменьшению вертикальной составляющей движения, толкая трубку вверх, это приводит к закручиванию трубки, что приводит к закручиванию трубки, как это показано на рис. 8.в.

Когда трубка движется вниз во время второй половины цикла колебаний, она закручивается в противоположную сторону. Это закручивание называется эффектом Кориолиса.

Исходя из второго закона Ньютона, угол закручивания трубки датчика прямо пропорционален количеству жидкости, проходящей через трубку в единицу времени. Электромагнитные катушки-детекторы, расположенные с каждой стороны трубки, снимают сигнал, соответствующий колебаниям трубки. Массовый расход определяется путем измерения временной задержки между сигналами детекторов.

При отсутствии потока закручивания трубок не происходит, и между сигналами детекторов нет временной разности.

При наличии потока трубка закручивается, при этом возникает разность по времени в поступлении двух сигналов по скорости. Эта разность во времени прямо пропорциональна массовому расходу.

 







Дата добавления: 2015-08-27; просмотров: 1075. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия