Студопедия — Закон Ома для участка цепи. Сопротивление металлического проводника и его зависимость от размеров и вещества проводника. Удельное сопротивление вещества
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон Ома для участка цепи. Сопротивление металлического проводника и его зависимость от размеров и вещества проводника. Удельное сопротивление вещества






Напряжение, сила тока и сопротивление — физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик Ом.
Закон Ома звучит так: сила тока на участке цепи прямо пропорциональна напряжению на этом участке (при заданном сопротивлении) и обратно пропорциональна сопротивлению участка (при заданном напряжении): . Из формулы следует, что . Так как сопротивление данного проводника не зависит ни от напряжения, ни от силы тока, то последнюю формулу надо читать так: сопротивление данного проводника равно отношению напряжения на его концах к силе протекающего по нему тока.
Причиной сопротивления металлического проводника является взаимодействие электронов при их движении с ионами кристаллической решетки. Отсюда предположение: сопротивление проводника зависит от его длины и площади поперечного сечения, а также от металла, из которого изготовлен проводник.
На все эти вопросы ответил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника. Вещество проводника характеризует удельное сопротивление — это сопротивление проводника из данного вещества длиной 1 м, площадью поперечного сечения 1 мм2.
Зависимость сопротивления проводника от его размеров и вещества выражают формулой:

16. Магнитное поле. Действие магнитного поля на электрические заряды.
Магнитное поле проявляется около постоянных магнитов и проводников, по которым идет электрический ток. Широко распространенным индикатором магнитного поля является магнитная стрелка (компас). С помощью этого индикатора можно обнаружить, что магниты разноименными полюсами притягиваются, а одноименными — отталкиваются. Это взаимодействие описывается по схеме: магнит — поле — магнит. Иначе говоря, вокруг магнита существует магнитное поле, которое действует на другие магниты, в частности на магнитные стрелки или намагничивающиеся частицы железа (железные опилки).
Идентифицировать магнитное поле тока в плоскости, перпендикулярной проводнику, помогают железные опилки и магнитные стрелки. Пространственная ориентация опилок и стрелок изменяется на противоположную (на 180°) при изменении направления тока в проводнике. Это значит, что величина, характеризующая магнитное поле (она называется магнитной индукцией), будет векторной. Линии магнитной индукции для прямого проводника (рис. 36) с током являются концентрическими окружностями с центром на оси проводника. Они замкнуты, т. е. не имеют начала и конца. Магнитное поле с замкнутыми линиями магнитной индукции называется вихревым.
Вектор магнитной индукции В (см. рис. 36) направлен по касательной к замкнутой линии. Его направление определяют по правилу буравчика: если ввинчивать буравчик по направлению тока в проводнике, то направление скорости вращения конца его рукоятки в данной точке совпадает с направлением вектора магнитной индукции В в этой точке; по правилу правой руки: если охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то кончики остальных пальцев покажут направление вектора индукции в этой точке.
Многочисленные опыты свидетельствуют о том, что магнитное поле постоянного магнита действует на проводник с током, т. е. оно действует на


упорядоченно движущиеся электрические заряды. На неподвижные заряды магнитное поле не действует. Эти положения подтверждаются опытами: при замыкании электрической цепи (рис. 37) проводник втягивается в область между полюсами магнита, а при смене направления магнитного поля или тока выталкивается из этой области (рис. 38). При отсутствии тока нет взаимодействия проводника и магнита.
Явление взаимодействия проводника с током с магнитным полем магнита широко используется при конструировании измерительных приборов и электродвигателей.
Магнитное поле постоянного магнита действует на движущиеся электрические заряды, не связанные с проводником. В катодных трубках, в телевизионных кинескопах пучок свободных электронов движется прямолинейно.

17. Электромагнитное поле. Электромагнитные волны и их свойства.
Известно, что электрический ток порождает магнитное поле (опыт Эрстеда), изменяющееся магнитное поле порождает электрический ток (опыт Фарадея). Имея в виду эти экспериментальные факты, английский физик Дж. Максвелл создал теорию электромагнитных волн. По Максвеллу: переменное магнитное поле порождает вихревое электрическое (явление электромагнитной индукции), а переменное электрическое поле порождает вихревое магнитное (магнитоэлектрическая индукция). В результате в соседних областях пространства возникает единое электромагнитное поле.
Электромагнитное поле в каждой точке пространства характеризуется напряженностью Е и индукцией В. Возникновение электромагнитной волны можно представить так: в некоторой области пространства возникают колебания электрического заряда, например между контактами электрической цепи проскакивает искра. Это повлечет за собой колебания вектора напряженности Е, т. е. его модуль и направление станут периодически меняться. Согласно теории Максвелла, в этой же области будут происходить колебания вектора магнитной индукции Б. Эти колебания порождают электромагнитные волны, распространяющиеся в пространстве. Моментальный «снимок» электромагнитной волны показан на рисунке 41.
Теория Максвелла показала, что электромагнитные волны — волны поперечные, их скорость распространения в вакууме примерно равна 300 000 км/с, эта волна несет энергию.
С помощью искрового разрядника и аналогичного ему приемника немецкий физик Г. Герц получил и зарегистрировал электромагнитные волны, обнаружил их отражение и преломление. Заслуга по практическому использованию электромагнитных волн в радиосвязи принадлежит русскому физику А. С. Попову.







Дата добавления: 2015-06-15; просмотров: 1706. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия