Студопедия — Применение семантических моделей при проектировании
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение семантических моделей при проектировании






Широкое распространение реляционных СУБД и их использование в самых разнообразных приложениях показывает, что реляционная модель данных достаточна для моделирования предметных областей. Однако проектирование реляционной базы данных в терминах отношений на основе механизма нормализации часто представляет собой очень сложный и неудобный для проектировщика процесс.

При этом проявляется ограниченность реляционной модели данных в следующих аспектах:

· Модель не предоставляет достаточных средств для представления смысла данных. Семантика реальной предметной области должна независимым от модели способом представляться в голове проектировщика.

· Для многих приложений трудно моделировать предметную область на основе плоских таблиц. В ряде случаев на самой начальной стадии проектирования проектировщику приходится производить насилие над собой, чтобы описать предметную область в виде одной (возможно, даже ненормализованной) таблицы.

· Хотя весь процесс проектирования происходит на основе учета зависимостей, реляционная модель не предоставляет каких-либо средств для представления этих зависимостей.

· Несмотря на то, что процесс проектирования начинается с выделения некоторых существенных для приложения объектов предметной области («сущностей») и выявления связей между этими сущностями, реляционная модель данных не предлагает какого-либо аппарата для разделения сущностей и связей.

Моделирование структуры базы данных при помощи алгоритма нормализации, описанного в п.5.1, имеет серьезные недостатки:

1. Первоначальное размещение всех атрибутов в одном отношении является очень неестественной операцией. Интуитивно разработчик сразу проектирует несколько отношений в соответствии с обнаруженными сущностями.

2. Невозможно сразу определить полный список атрибутов. Пользователи имеют привычку называть разными именами одни и те же вещи или, наоборот, называть одними именами разные вещи.

3. Для проведения процедуры нормализации необходимо выделить зависимости атрибутов, что тоже очень нелегко, т.к. необходимо явно выписать все зависимости, даже те, которые являются очевидными

В реальном проектировании структуры базы данных применяются другой метод - так называемое, семантическое моделирование. Семантическое моделирование представляет собой моделирование структуры данных, опираясь на смысл этих данных. В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER - Entity-Relationship).

Первый вариант модели сущность-связь был предложен в 1976 г. Питером Пин-Шэн Ченом. В дальнейшем многими авторами были разработаны свои варианты подобных моделей (нотация Мартина, нотация IDEF1X, нотация Баркера и др.). Кроме того, различные программные средства, реализующие одну и ту же нотацию, могут отличаться своими возможностями. По сути, все варианты диаграмм сущность-связь исходят из одной идеи - рисунок всегда нагляднее текстового описания. Все такие диаграммы используют графическое изображение сущностей предметной области, их свойств (атрибутов), и взаимосвязей между сущностями.

Прежде, чем мы коротко рассмотрим особенности одной из распространенных семантических моделей, остановимся на их возможных применениях:

1. Наиболее часто на практике семантическое моделирование используется на первой стадии проектирования базы данных. При этом в терминах семантической модели производится концептуальная схема базы данных, которая затем вручную преобразуется к реляционной (или какой-либо другой) схеме. Этот процесс выполняется под управлением методик, в которых достаточно четко оговорены все этапы такого преобразования.

2. Реализуется автоматизированная компиляция концептуальной CASE-схемы в реляционную. При этом известны два подхода:

· на основе явного представления концептуальной схемы как исходной информации для компилятора;

· построения интегрированных систем проектирования с автоматизированным созданием концептуальной схемы на основе интервью с экспертами предметной области.

И в том, и в другом случае в результате производится реляционная схема БД в третьей нормальной форме.

3. Работа с базой данных в семантической модели, т.е. СУБД, основанные на семантических моделях данных. При этом снова рассматриваются два варианта:

· обеспечение пользовательского интерфейса на основе семантической модели данных с автоматическим отображением конструкций в реляционную модель данных (это задача примерно такого же уровня сложности, как автоматическая компиляция концептуальной схемы базы данных в реляционную схему)

· прямая реализация СУБД, основанная на какой-либо семантической модели данных. Наиболее близко ко второму подходу находятся современные объектно-ориентированные СУБД, модели данных которых по многим параметрам близки к семантическим моделям (хотя в некоторых аспектах они более мощны, а в некоторых - более слабы).

 

Распределенные информационные системы (РИС), основные понятия.

Под распределенной БД (Distributed DataBase - DDB) обычно подразумевают базу данных, включающую фрагменты из нескольких баз данных, которые располагаются на различных узлах сети компьютеров, и, возможно управляются различными СУБД. Распределенная база данных выглядит с точки зрения пользователей и прикладных программ как обычная локальная база данных. В этом смысле слово «распределенная» отражает способ организации базы данных, но не внешнюю ее характеристику («распределенность» базы данных невидима извне). Примерами СУБД, обеспечивающих распределенную обработку данных являются: R-Star, Distributed Ingres, Oracle 7, Ingres/Star, CA-OpenIngres, Sybase, Informix-OnLine Dynamic Server.

Распределенная БД предполагает хранение и выполнение функций управления данными в нескольких узлах и передачу данных между этими узлами в процессе выполнения запросов.

При построении систем распределенных обработки данных применяются две технологии:

1. Технология распределенной БД (Технология STAR), при которой фрагменты данных расположены на разных узлах сети. Все изменения должны синхронно передаваться во все узлы. Такая схема предъявляет жесткие требования к производительности и надежности каналов связи.

2. Технология тиражирования, при которой в каждом узле дублируются данные всех других узлов, а передаются только операции изменения данных, а не сами данные как в технологии STAR. Передача может быть асинхронной (неодновременной для разных узлов).

 







Дата добавления: 2015-04-19; просмотров: 708. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2024 год . (0.048 сек.) русская версия | украинская версия