Студопедия — Индуктивная среда
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Индуктивная среда






Индуктивная cреда. Это cреда, в которой возникает ЭДС за счет изменения магнитного потока, и она пропорциональна скорости этого изменения с обратным знаком. Это свойство открыл Максвелл. Поэтому в его честь закон носит его имя.

Закона Максвелла гласит: в любом контуре при изменении магнитного потока возникает ЭДС, это и есть ЭДС индуктивной среды.

 

 

 
 


 

 

Рис. 6.2. Наглядное представление возникновения ЭДС
и напряжения в электрическом контуре

 

Рассмотрим этот фундаментальный рисунок более подробно. Видим контур, выделенный жирной линией. Его пронизывает магнитный поток сверху вниз. Ориентируем контур относительно магнитного потока. Магнитный поток в данном случае — вектор, направленный сверху вниз. Принято направление ориентации считать так. Положительным направление контура считается таким, чтобы со стороны заостренного конца стрелки вектора обход контура был бы виден против часовой стрелки. Это направление показано около слова «контур». Тогда ЭДС будет направлена против направления контура, а напряжение — по обходу контура.

Итак, сделаем обобщения. В электрических машинах ЭДС пропорциональна скорости изменения магнитного потока со знаком минус. Это соотношение можно представить по-разному. Имеется некоторый магнитный поток, в котором движется проводник с некоторой скоростью. Или имеется некоторый проводник, относительно которого движется магнитный поток. Или имеется некоторый контур, в котором магнитный поток изменяется с некоторой скоростью. Наконец, в переменном токе имеется некоторый синусоидально изменяющийся поток, который изменяется с некоторой частотой. Поэтому остановимся на рис. 6.3, позволяющем наглядно видеть эти обобщения.

Рис. 6.3. ЭДС и напряжение в неизменном контуре

 

На рис. 6.3 видим слева некий идеализированный приемник, способный вырабатывать ЭДС, равную приложенному напряжению. Например, ротор идеализированной машины постоянного тока без момента на валу машины. Справа видим заторможенный стержень, находящийся в движущемся магнитном потоке. Приемник вместе со стержнем и шинами составляют контур. Сейчас все разгружено, поэтому никакого тока нет (поэтому мы не называем его контуром тока), но ЭДС в стержне есть, поскольку он движется в магнитном поле вправо. Направление ЭДС определяется по правилу правой руки. Руку надо поставить так, чтобы магнитные силовые линии входили в ладонь. Большой палец должен показывать направление движение проводника, в данном случае стержня, относительно магнитного поля. Стержень закреплен, а поле движется. Поэтому движение стержня относительно поля видим вправо. Туда же направлен и большой палец. Остальные пальцы ладони покажут направление ЭДС.

ЭДС без напряжения не бывает согласно с законом равновесия ЭДС. Поэтому тут же изображен вектор напряжения, но он уже ориентирован относительно шин, то есть относительно внешней части контура. Хотя это же напряжение действует и на сам стержень против ЭДС, что показано пунктиром. Необходимо на этом примере освоить практически диалектику природы электричества, выражающейся в данном случае в единстве противоположностей ЭДС и напряжения. Заметим, что через время dt контур наполнится еще одной силовой линией. Поэтому ту же картину можно трактовать и так: ЭДС пропорциональна скорости изменения магнитного потока внутри контура. Эти две трактовки (Фарадея и Максвелла), как видим, абсолютно идентичны. Более того, они справедливы и в том случае, если убрать все эти стержни, шины и другие физические элементы контуров. Трактовка та же даже в абсолютном вакууме или вдали от Земли в космическом пространстве. Иначе мы бы не могли связываться со спутниками и получать сигналы от других Миров. Однако это представление относится к другой области электромагнитных явлений — радиотехнике, которая освоена человечеством в XIX–XX веке и продолжает освоение сейчас (хотя бы на примере мобильной телефонной связи). Эта область знаний не предполагает изучение появления механических сил в производстве некоторой механической работы (скалярное произведение силы на перемещение). Она относится к обеспечению информатики.

Продолжим рассмотрение рис. 6.3. Что же происходит в это время с приемником (слева). К нему приложено напряжение шин. Значит, в нем непременно должна образоваться равная и противоположная ЭДС. Если это ротор идеальной машины постоянного тока, то он начнет вращаться, чтобы выработать указанную ЭДС или, как удобно называть противоэдс равную напряжению. Поскольку было условлено, что машина идеальна и не нагружена тормозным моментом, то тока не будет. И во всех наших рассуждениях ток вообще не присутствовал. Что же будет, если потребитель (в нашем случае машина) не может выработать противоэдс, (ротор заторможен), но такую противоэдс выработает сам контур? В контуре появится ток, который вызовет полную компенсацию внешнего магнитного потока с тем, чтобы изменения магнитного потока внутри контура не было. Говорят в этом случае, что магнитный поток будет вытеснен из контура в окружающее пространство. Поскольку ток «выполнит свою задачу» в воздухе или в пустоте, то, возможно, он будет достаточно большой, так называемый ток короткого замыкания.







Дата добавления: 2015-03-11; просмотров: 427. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия