Студопедия — Статистический смысл понятия - энтропия
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Статистический смысл понятия - энтропия






Вероятностное толкование понятия энтропии было дано в статистической физике Людвигом Больцманом. Для этого было введено понятие термодинамической вероятности (W) данного состояния некоторой системы. Термодинамическая вероятность означает число возможных неотличимых микроскопических состояний системы реализующих определенное макроскопическое состояние этой системы.

Рассмотрим простую систему всего из двух неотличимых молекул, находящихся в некотором объеме. Мысленно разделим этот объем на две части, и, пронумеровав молекулы, найдем число способов, которым можно разместить их в этих двух частях.

Как видно из рисунка, всего таких способов будет четыре, но два нижних неотличимы, так как молекулы 1 и 2 совершенно одинаковы, и соответствуют одному и тому же макроскопическому состоянию системы. Таким образом, мы имеем три различных макроскопических состояния системы, номера которых обозначены слева на рисунке. Два верхних макросостояния реализуются только одним способом, а третье, нижнее двумя. Число способов и является термодинамической вероятностью W, величина которой приведена справа от рисунков. Все четыре способа равновероятны, поэтому большую часть времени система будет находиться в третьем состоянии. Вероятность p (на рисунке ее значения приведены справа от W) - конкретного макроскопического состояния определяется отношением числа способов, которым можно реализовать это состояние W к общему числу возможных способов размещения молекул. Первые два макросостояния более упорядоченные - в них мы можем выделить две области, в одной есть молекулы, в другой - нет. Третье макросостояние менее упорядоченное, так как мы не можем выделить таких областей. Это означает, что вероятность нахождения системы в менее упорядоченном макроскопическом состоянии больше, чем в упорядоченном.

Мы рассмотрели только 2 молекулы. Число способов размещения n молекул в двух частях объема равно 2n, а число способов размещения всех молекул в одной половине объема равно 1. Из этого следует, что вероятность нахождения всех молекул в одной половине объема p = 1/2n. При большом числе молекул (в одном моле газа n = 6·1023) вероятность упорядоченного состояния, когда все молекулы соберутся в одной половине становится практически равной нулю. Таким образом, чем большим числом способов может быть реализовано определенное макроскопическое состояние системы (или, что одно и то же, чем больше термодинамическая вероятность W этого состояния), тем менее оно упорядоченное и наиболее вероятное. Энтропия термодинамического состояния системы определяется через термодинамическую вероятность как: S = k·lnW, где k – постоянная Больцмана. Это выражение энтропии через термодинамическую вероятность получило название " принцип Больцмана ";.

В статистической термодинамике энтропия не только функция состояния системы и физическая величина, характеризующая направленность процессов в природе, но и мера беспорядка и хаоса.

В изолированных системах все реальные процессы (например, расширение газа, диффузия, теплопередача) протекают в сторону увеличения энтропии. В результате этих процессов система приходит в состояние термодинамического равновесия, и ее макроскопические параметры (V, P, T) перестают меняться. В этом состоянии энтропия системы достигает максимального значения. Поэтому состояние термодинамического равновесия изолированной системы можно определить, как состояние с максимальным значением энтропии, или с максимальной величиной хаоса.







Дата добавления: 2015-04-19; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия