Студопедия — ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ






 

Изменение свойств в зависимости от температуры - весьма важная ха­рактеристика полимерных материалов. Знание температурных переходов важ­но, прежде всего, потому что позволяет установить тот температурный интер­вал, в котором данный полимер имеет достаточную механическую прочность и может применяться в практических целях как конструкционный материал.

Основными понятиями, характеризующими температурные характери­стики полимерных материалов, являются теплостойкость, термостойкость и др.

Теплостойкость полимеров - предельная температура, до которой со­храняется необходимая прочность полимера. Она характеризуется температур­ным интервалом, в котором полимер в виде изделия сохраняет необходимую механическую прочность и работоспособность. Количественная характеристи­ка теплостойкости — температура, при которой в условиях действия постоян­ной нагрузки деформация образца не превышает некоторую величину.

Для твердых полимеров (стеклообразных или кристаллических) тепло­стойкость - способность не размягчаться при повышении температуры, для эластомеров - способность сохранять высокоэластические свойства и проч­ность при повышении температуры. Количественной характеристикой служит коэффициент теплостойкости, т.е. отношение какого-либо механического свойства (прочности при растяжении, относительного удлинения при разрыве и др.) при повышенных температурах к соответствующим значениям при нор­мальной температуре.

Существует ряд стандартизированных методов определения теплостой­кости, которые различаются формой и размерами испытуемых образцов, видом деформаций, скоростью повышения температуры и др. Так, при определении теплостойкости по Мартенсу консольно закрепленный образец подвергают действию изгибающего момента и фиксируют температуру, при которой достигается определенная деформация. Теплостойкость по Вика определяют вдавливанием в образец торца цилиндра, при этом фиксируют температуру, при которой глубина вдавливания составит определенное значение (табл.1). Получаемые в этих методах характеристики теплостойкости фиксирует раз­мягчение полимерного материала только при некоторых принятых режимах нагружения и нагревания. В условиях эксплуатации теплостойкость полимеров зависит как от приложенной нагрузки, так и от длительности ее воздействия. При этом для стеклообразных полимеров теплостойкость не может превышать температуру стеклования, а для кристаллических - температуру плавления.

 

Характеристики теплостойкости полимеров

Таблица I

Полимер Теплостойкость Теплостойкость
  по Вика. °С по Мартенсу, °С
Полиформальдегид   -
Полиметилметакрилат 105-115 60-80
Поликарбонат 150-160 115-125
Полипропилен   -
Полистирол -  
Поливинилхлорид 90-95 65-70

 

Общим методом, позволяющим более полно характеризовать темпера­турный диапазон работоспособности полимера, может служить определение области температур и напряжений, в которой полимерный материал остается твердым в течение определенного времени. При этом образец подвергают одноосному сжатию до заданной деформации, после чего повышают темпера­туру с постоянной скоростью. На графике зависимости напряжения от темпе­ратуры наблюдается максимум (наибольшая прочность), как это показано на рис.17,а, обусловленный тем, что сначала напряжение в материале увеличива­ется вследствие теплового расширения, а затем снижается из-за размягчения и резкого ускорения релаксационных процессов при повышенных температу­рах. Варьированием нагрузок определяют кривую, представляющую собой геометрическое место максимумов. Полученная кривая разграничивает область напряжений и температур, в которой теплостойкость сохраняется, и область, соответствующую потере теплостойкости.

Для иллюстрации данного метода на рис. 17,6 приведены кривые, ограни­чивающие область работоспособности различных классов полимеров: 1- полиметилметакрилата, 2 - поликарбоната, 3 - полиакрилата, 4 - полиамида. Видно, что испытанные полимеры могут использоваться в качестве конструкционных материалов в следующих температурных пределах: полиметилметакрилат до 70 °С, поликарбонат до 140 °С, полиакрилат до 250 °С и полиамид до 300°С.

Термостойкость полимеров - предельная температура, при которой происходит химическое изменение полимера, отражающееся на его свойствах. Химические процессы, протекающие при высоких температурах, приводят к термической деструкции или структурированию полимеров. Таким образом, термостойкость является тем температурным пределом, выше которого уже не может быть использована теплостойкость полимера, поскольку выше этого предела полимер не может существовать не изменяясь.

Термостойкость определяют методами термогравиметрии и дифференци­ального термического анализа.

При использовании термогравиметрии испытание проводят при непре­рывном повышении температуры с определенной скоростью. Количественной характеристикой является температура Т(), при которой начинается интенсив­ная потеря массы образца, или температура, при которой потеря массы состав­ляет определенную долю от исходной массы образца, например, 0,5 (Т05) (табл.2).

Характеристики термостойкости некоторых полимеров (данные получены гермогравимстрней в психометрических условиях)

 

Т а б л и ц а 2

Полимер Т0,°С Т0,5,°С
Поливинилхлорид    
Полипропилен    
Полистирол    
Полиэтилен    
Поливинилфторид    
Политетрафторэтилен    

 

При использовании второго метода, основанного на том, что химические превращения полимера сопровождаются тепловыми эффектами, возможно бо­лее точное определение температуры начала интенсивных химических пре­вращений макромолекул.

Следует обратить внимание на то, что для многих твердых полимеров (ПЭ, ПП, ПММА, ПС) потеря теплостойкости происходит при значительно низких температурах, чем потеря термостойкости. В этом случае верхний тем­пературный предел работоспособности полимерного материала определяется его теплостойкостью, а не термостойкостью. Для ряда полимеров (например, полипиромеллитимидов) потеря теплостойкости и термостойкости происходит почти при равных температурах. Для некоторых полимеров (целлюлоза, поли­метил и денфталит) теплостойкость теряется при температурах, когда материал остается теплостойким вплоть до химического изменения. Работоспособность такого полимера ограничивается термостойкостью.

С целью повышения термостойкости в полимер вводятся специальные добавки - стабилизаторы, замедляющие термическую и термоокислительную деструкцию.

Теплопроводность полимеров - способность полимерных тел переносить тепло от более нагретых элементов к менее нагретым. Она зависит от темпера­туры, химической структуры и физического состояния.

Для температурной зависимости теплопроводности аморфных полимеров характерно наличие пологого максимума при температуре стеклования.

Теплопроводность кристаллических полимеров больше, чем аморфных. С увеличением температуры от -180 до 150°С теплопроводность кристалличе­ских полимеров падает (ПЭ, полиметиленоксид), других - растет (ПП, Ф-4, Ф-3). По абсолютному значению теплопроводность полимеров 1-й группы выше, чем у 2-й группы. Для всех полимеров с ростом степени кристаллично­сти теплопроводность увеличивается, при плавлении сильно уменьшается. Те­плопроводность ориентированных полимеров в направлении растяжения выше, чем теплопроводность того же полимера в изотропном состоянии. Температуропроводность полимеров - параметр, характеризующий ско­рость распространения температуры под действием теплового потока в неста­ционарных температуоных условиях. Определяется соотношением:

где χ- теплопроводность; СР - удельная теплоемкость при постоянном давле­нии; р - плотность.

Теплоемкость полимеров - количество теплоты, затрачиваемое для изме­нения температуры тела на 1°С. Отношение теплоемкости к единице количест­ва вещества называется удельной теплоемкостью.

 

где Н - энтальпия; V- внутренняя энергия.

Жаростойкость полимерных материалов - способность полимерных материалов выдерживать без возгорания и обугливания воздействие раскален­ного до высокой температуры источника тепла.

Для определения жаростойкости образец приводят в соприкосновение в течение 3 минут с силитовым стержнем, нагретым до 950 °С:

где G, l- среднеарифметические потери массы и уменьшение длины образца.

Наивысшей жаростойкостью обладают полимерные материалы, получен­ные на основе термостойких полимеров (ФФС, кремнийорганических смол, полиимидов) и минеральных наполнителей (асбест, кварцевая мука, слюда, углеродные и стеклянные волокна).

Жаростойкие полимерные материалы можно использовать в конструкци­ях, работающих в зоне действия высоких температур, а также в целях тепло­изоляции и тепловой защиты.

Морозостойкость - способность этих материалов сохранять при низких температурах свои эксплуатационные свойства.

Критерии морозостойкости связаны с исходными свойствами полиме­ров. Для стеклообразных полимеров - это отсутствие хрупкости, т.е. темпера­тура хрупкости. Для эластомеров морозостойкость означает сохранение высо­кой эластичности, поэтому для них температурной границей является темпера­тура стеклования.

На практике морозостойкость выражают способностью материала выдер­живать без растрескивания разовое охлаждение до заданной температуры в те­чение определенного времени или многократные циклы охлаждения и нагрева­ния. Морозостойкость полимерных материалов зависит от продолжительности нагружения, поскольку от нее зависят Тс и Тхр, а также другие свойства материала.







Дата добавления: 2015-04-16; просмотров: 3072. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия