Студопедия — Вопрос 33. Дифференцируемость функции многих переменных. Частные производные
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 33. Дифференцируемость функции многих переменных. Частные производные






Пусть определена в некоторой окрестности точки , - точка из этой окрестности.

Определение 33.1 Величина называется приращением функции в точке, соответствующим приращению аргумента .

Определение 33.2 Функция называется дифференцируемой в точке , если существуют такие постоянные числа и функции при (18.1)

Часто обозначают и . Тогда (18) перепишем в виде .

При наше определение (18.1) совпадает с известными из материала 1-го семестра определением дифференцируемости . Для функций одной переменной дифференцируемость равносильна существованию производной. В случае нескольких переменных ситуация несколько сложнее.

Сначала введем в рассмотрение величину . Она представляет собой приращение функции при фиксированных значениях всех производных, кроме i -той.

Пусть дифференцируема в точке . Тогда для любого равенство (18.1) дает при (18.2)

Поскольку при фиксированных значениях равносильно тому, что , равенство (18.2) означает, что функция одной переменной .

дифференцируема в точке и, значит, существует
(18.3)
называемый, по определению, частной производной функции по переменной в точке .

Мы только что, тем самым, доказали теорему:

Теорема 33.1. Если дифференцируема в точке , то для всех существуют .

Таким образом, существование частных производных – необходимое условие дифференцируемости. При этом при .

Другое необходимое условие дифференцируемости – непрерывность функции, как показывает следующая теорема.

Теорема 33.2. Если дифференцируема в точке , то .

Доказательство. Достаточно доказать, что при , , (т.к. ). Но это сразу следует из равенства (18.1), так как .

Однако, в отличие от случая , из существования частных производных ,определенных равенством (18.3) не следует даже непрерывность функции в точке и тем более не следует дифференцируемость в точке , согласно теореме(18.2).

Пример. . Тогда , так как . Аналогично, . Однако даже не непрерывна в точке .

Достаточное условие дифференцируемости дает следующая теорема.

Теорема 33.3. Пусть частные производные существуют в окрестности точки и непрерывны в этой точке. Тогда дифференцируема в точке .

Доказательство. Пусть принадлежит рассматриваемой окрестности . При этом все точки так же принадлежат рассматриваемой окрестности. Приращение функции представим в виде (4)

и рассмотрим разности (5) составляющие в сумме приращение (4).

Положим (то есть фиксируем все переменные, кроме ). Тогда рассматриваемая разность (5) имеет вид . Функция по условию дифференцируема на отрезке, соединяющим и . Значит, она непрерывна на этом отрезке и можно применить теорему Лагранжа, согласно которой , где .

Но . По условию непрерывности частных производных , где при .

Поэтому каждая из разностей (5) имеет вид , а приращение (4) совпадает с (3) из определения дифференцируемости. Теорема доказана.

Замечание 1. Непрерывность частных производных не является необходимым условием дифференцируемости функций. Например можно доказать, что функция дифференцируема в точке , но частные производные в этой точке не непрерывны.

Замечание 2. Тем не менее, для функции частные производные в точке равны 0, так как и (в остальных точках , и ясно, что эти производные терпят разрыв в точке . Но приращение не имеет вид , где при . Действительно, полагая и предполагая, что получаем , или что невозможно, так как при правая часть стремится к 0, а левая нет!







Дата добавления: 2015-04-16; просмотров: 1028. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия