Студопедия — Интегрирование рациональных дробей
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование рациональных дробей






Задача интегрирования рациональной дроби сводится к умению интегрирования только правильных рациональных дробей, так как интегрирование целой части дроби (многочлена) не сложная. Если решена задача разложения правильной дроби на сумму простых дробей, то дальше надо уметь интегрировать простые дроби. Покажем, как интегрировать такие дроби.

I.

II.

III.

 

Интегрирование дроби IV типа проводится аналогично интегрированию дроби III типа.

Пример 22.

[ D = 16 – 52 < 0 Þ дробь III типа.]


Ответ:

Пример 23.

Ответ:

 

 

Итак, любая рациональная дробь интегрируема. Для этого необходимо выполнить следующие действия.

1) Если дробь является неправильной, выделить ее целую часть. То есть представить в виде:

,

где Tm-n (x) и Rr (x) – многочлены степени m-n и r соответственно (причем r<n).

2) Разложить правильную рациональную дробь на сумму простых дробей

3) Вычислить интегралы от многочлена Tm-n (x) и каждой из простых дробей, полученных на шаге 2).

Пример 24.

1) Дробь - неправильная рациональная дробь. Выделим ее целую часть:

Поэтому можно записать:

 

2) Полученную правильную дробь разложим на сумму простых дробей:

Отсюда следует:

Значит, подынтегральная рациональная дробь представима в виде:

3) Найдем интеграл:

Ответ:

 







Дата добавления: 2015-10-19; просмотров: 637. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия