Студопедия — ЧАСТНЫЕ ПРОИЗВОДНЫЕ ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЧАСТНЫЕ ПРОИЗВОДНЫЕ ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ.






Рассмотрим функцию двух переменных z = f(x, y).

Частной производной функции двух переменных z = f(x, y) по х в точке (х, у) называется предел , если он существует. Частная производная есть обычная производная от функции f(x,y), рассматриваемой как функция только от переменной х при фиксированном у.

Аналогично определяется частная производная по у в точке (х,у):

.

Если у функции существует частная производная снова по переменной х, то ее называют частной производной второго порядка от функции f(x,y) по переменной х и обозначают . Таким образом, .

Аналогично для переменной у: .

Если существует частная производная от функции по переменной у, то эту производную называют смешанной частной производной второго порядка от функции z = f(x, y) и обозначают .

В курсе высшей математики доказывается теорема о том, что если функция двух переменных определена вместе со своими частными производными в окрестности некоторой точки, причем смешанные частные производные непрерывны в этой точке, то в этом случае результат дифференцирования не зависит от порядка дифференцирования, т. е. .

ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ

Рассмотрим функцию двух переменных z = f(x, y). Если эта функция дифференцируема в точке (х,у), то для нее существует производная по направлению любого единичного вектора ` n0 = (Cosa, Cosb), выражаемая формулой ,

где a и b - углы, которые вектор ` n0 составляет с осями х и у.

Если же необходимо найти производную по направлению произвольного вектора ` n = a`i + в`j, то его необходимо сначала пронормировать и найти направляющие косинусы по формулам а потом воспользоваться приведенной выше формулой.







Дата добавления: 2015-10-19; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия