Студопедия — Решение уравнения (1) имеет вид
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение уравнения (1) имеет вид






 

x = xm соs (wot + a), (2)

 

где xm – амплитуда колебания, наибольшее значение величины, совершающей колебания;

(w0t + a) – фаза колебания;

a – начальная фаза, т.е. фаза в момент t = 0;

w0 – собственная круговая частота колебания (число колебаний за 2p секунд).

Используются также следующие понятия:

T – период колебания (время одного полного колебания). T = 2p/w0.

n – частота колебания (число колебаний за 1 секунду): .

Для рассматриваемых осцилляторов периоды колебаний равны:

пружинного маятника ; (3)

для математического ; (4)

для физического . (5)

В формуле (5) величина I – момент инерции физического маятника относительно оси O.

Энергия гармонического осциллятора складывается из кинетической и потенциальной энергий и в любой момент времени остается постоянной:

 

E = kxm2/2 или E = mw02xm2/2. (6)

 

2. Свободные затухающие колебания

При малых колебаниях и небольших скоростях сила сопротивления среды пропорциональна величине скорости Fсопр = – rV, где r – постоянная, называемая коэффициентом сопротивления. Тогда уравнение колебаний можно представить следующим образом:

, (7)

где ; w0 – собственная частота колебаний.

Решение уравнения (7) (при условии w0> b) имеет вид

 

x = xm0e-btcos(wt+a), (8)

 

где . (9)

 

График этой функции дан на рис. 2.

Рис. 2

Таким образом, данные колебания можно рассматривать как гармонические с частотой w и с амплитудой, убывающей по закону

xm(t) = xm0e-bt (10)

 

Для характеристики быстроты затухания колебаний применяется несколько величин:

b – коэффициент затухания, величина обратная времени, за которое амплитуда колебаний уменьшится в e раз;

t – время релаксации, за которое амплитуда колебаний уменьшится в e раз: ;

l - логарифмический декремент затухания. По определению – это натуральный логарифм двух последовательных амплитуд колебаний.

. (11)

По физическому смыслу l – это величина, обратная числу колебаний, за время которых амплитуда колебаний уменьшится в e раз. Связь его с коэффициентом затухания выражается формулой

l = bT; (12)

 

Q – добротность колебательной системы. По определению Q – это отношение числа p к логарифмическому декременту затухания колебаний:

 

Q = p/l. (13)

 

Если в уравнении (7) b³ w0, то колебания в системе невозможны. При выведении ее из положения равновесия происходит апериодический процесс возврата системы в исходное состояние.

 

3. Вынужденные колебания

Если вынуждающая сила, действующая на колебательную систему, изменяется по гармоническому закону

F = Fm cos(Wt),

 

то дифференциальное уравнение вынужденных колебаний можно представить в виде

, (14)

 

где b – коэффициент затухания, а w0 – собственная частота колебаний системы. Это неоднородное дифференциальное уравнение (с правой частью, не равной нулю). Из теории дифференциальных уравнений известно, что общее решение уравнения такого вида представляет собой сумму общего решения однородного уравнения затухающих колебаний, рассмотренного ранее, и частного решения данного неоднородного уравнения. При этом первое убывающее слагаемое играет роль только во время установления колебаний. На рис. 3 показан примерный вид зависимости x(t), описываемой уравнением (14).

B установившемся режиме вынужденные колебания являются гармоническими, незатухающими, происходят с частотой вынуждающей силы W. Их уравнение

 

x = xmcos (Wt + j) (15)

 

Рис. 3

При этом амплитуда xm вынужденных колебаний равна , (16) а сдвиг фаз этих колебаний j по отношению к вынуждающей силе определяется из равенства

. (17)

Зависимость вынужденных колебаний от частоты вынуждающей силы (16) приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Это явление называется резонансом, а соответствующая частота – резонансной частотой. Исследование равенства (16) дает

. (18)

Рис. 4
 
 

Графики зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы W (резонансные кривые), соответствующие различным значениям параметра b, показаны на рис. 4.

 

 

4. Сложение гармонических колебаний

При сложении двух гармонических колебаний, одинаково направленных и одинаковой частоты, описываемых уравнениями

 

, (19)

 

результирующее колебание будет также гармоническим и иметь частоту w0:

x = xmcos(w0t + a), (20)

 

где амплитуда xm и начальная фаза a равны соответственно:

 

(21)

При сложении двух гармонических колебаний одного направления с мало отличающимися частотами, которые задаются уравнениями

(22)

где Dw < < w, результирующее колебание является гармоническим с пульсирующей амплитудой. Такие колебания называются биениями.

Уравнение биений имеет вид

(23)

При сложении двух взаимно перпендикулярных колебаний одинаковой частоты, уравнения которых имеют вид

(24)

точка движется по траектории

(25)

В зависимости от разности фаз a складываемых колебаний возможны частные случаи:

1. a = 0 – точка движется по прямой

2. a = ±p – точка движется по прямой

В обоих случаях это гармоническое колебание, происходящее по закону

(26)

3. a = ±p/2 – точка движется по эллипсу, уравнение которого:

(27)

 

 







Дата добавления: 2014-11-12; просмотров: 701. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия