Студопедия — Теоретические сведения. В механике под твердым телом подразумевают абсолютно твердое тело, т
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. В механике под твердым телом подразумевают абсолютно твердое тело, т






 

В механике под твердым телом подразумевают абсолютно твердое тело, т. е. тело деформациями которого можно пренебречь. При вращении твердого тела все его точки движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения. Быстроту вращения характеризуют углом поворота тела в единицы времени. Если за любые равные промежутки времени тело поворачивается на одинаковые углы, вращение называется равномерным. Величина, определяющая изменение угла поворота за единицу времени, называется угловой скоростью. Угловая скорость определяется по формуле

.

Единицей измерения угловой скорости является рад/с. При неравномерном вращении изменение угловой скорости со временем характеризуется угловым ускорением, которое вычисляется по формуле

.

Единица измерения углового ускорения является рад/с2. Угловая скорость ω и угловое ускорение ε связаны с линейной скоростью и линейным (тангенциальным) ускорением следующими соотношениям:

и , (1)

где –расстояние от точек до оси вращения

При вращении тела вокруг неподвижной оси изменение угловой скорости и его движения зависит от действующего момента силы. Моментом силы относительно неподвижной точки О называется векторная величина, определяемая векторным произведением радиуса-вектора , проведенного из точки О в точку Априложения силы, на силу (рис. 1).

,

где –псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к .

Рис. 1 Рис.2

Модуль момента силы

,

где –угол между и ; –плечо силы - кратчайшее расстояние между линиями действия силы и точкой О.

Моментом силы относительно неподвижной оси , называется скалярная величина , равная проекции на эту ось вектора момента силы , определенного относительно произвольной точки О, данной на оси (рис. 2). Значение момента не зависит от выбора положения точки О на оси .

Равнопеременное вращательное движение тел характеризуется постоян­ным угловым ускорением, оно появляется под действием сил, момент которых постоянен по величине и направлению.

Зависимость углового ускорения от момента силы выражена в основном законе динамики вращательного движения

, (2)

где - момент инерции тела.

Момент инерции материальной точки относительно какой-либо оси вращения называется скалярная величина, равная произведению массы m этой точки на квадрат расстояния от точки до оси вращения:

.

Моментом инерции тела относительно данной оси вращения называют сумму моментов инерции элементарных масс, на которые разбивается тело:

,

где - элементарная масса; - расстояние от элементарной массы до оси вращения.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями:

.

Законы вращения тел можно изучить с помощью маятника Обербека.

Рассмотрим движения механической системы представленной на рис. 3. Груз массой m движется с ускорением под действием результирующей силы тяжести и силы натяжения нити (рис. 3). Запишем для груза второй закон Ньютона в проекции на направление движения:

 

Рис.3 Диск вращается равноускоренно под действием натянутой нити, вызванной силой натяжения нити . Сила натяжения передается нитью от груза к диску вращающегося маятника. Если предположить, что нить невесомая, то на диск маятника действует сила , равная по величине и противоположная ей по направлению (следствие третьего закона Ньютона: ). Отсюда . (3)  

 

Сила натяжения нити создает вращательный момент относительно горизонтальной оси O, направленный вдоль этой оси «от нас» и приводящий в движение маятник Обербека. Величина момента силы равна

, (4)

где – радиус диска, на который намотана нить.

Основной закон динамики вращательного движения (2) в скалярном виде и с учетом момента силы (4) примет вид (записаны проекции векторов моментов сил и углового ускорения на ось вращения О, направление которой выбрано «от нас»):

. (5)

Используя кинематическую связь линейного и углового ускорения (1), а также уравнение движения груза при нулевой начальной скорости , выразим через величины и :

. (6)

Преобразуем уравнение (5), используя выражение (6) и и получим момент инерции маятника Обербека

. (7)

Эту зависимость можно использовать для экспериментальной оценки величины момента инерции маятника Обербека.

Теоретический расчет момента инерции маятника Обербека представляет сумму моментов инерций - момента инерции диска радиусом , - моментов инерции четырех подвижных грузов и - момента инерции крестовины маятника без груза .

.

В связи с тем, что размеры грузов малы по сравнению с расстоянием от оси вращения до центров масс грузов, то грузы можно считать материальными точками. Для материальной точки момент инерции равен

,

где – масса груза на крестовине; – расстояние от оси вращения до центра грузов. Момент инерции крестовины маятника без груза определяется как

,

где – масса стержня без груза; - длина стержня крестовины.

Таким образом, теоретический расчет момент инерции маятника можно представить следующей формулой

.

Расчет разности моментов инерции и для двух различных расстояний и позволит исключить слагаемые и . Тогда теоретический расчет момента инерции маятника будет определяться по формуле

. (8)

Расчет момента инерции маятника по формуле (7) при различных расположениях грузов на крестовине можно теоретически проверить величиной момента инерции , рассчитанного по формуле (8).

 







Дата добавления: 2014-11-10; просмотров: 775. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия