Студопедия — Задача 4. Доказать дистрибутивность слева умножения относительно сложения, т.е
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 4. Доказать дистрибутивность слева умножения относительно сложения, т.е






Доказать дистрибутивность слева умножения относительно сложения, т.е.

(" а, b, сÎ N) а(b + с) = аb + ас.

Доказательство:

Пусть натуральные числа а и b выбраны произвольно, а с принимает различные натуральные значения (индукция по с).

Обозначим через М множество всех тех и только тех натуральных чисел с, для которых равенство а(b + с) = аb + ас верно, т.е.

М = {с/сÎ N, а(b + с) = аb + ас}, т.к. с Î N, то М Ì N,

I. Докажем, что 1 Î М, т.е. а × (b + 1) = аb + а× 1.

ab',

а × b + а × 1 а× b + а аb',

получили аb' = аb' – истинно, => 1 Î М.

II. Докажем, что с Î М => с' Î М

Пусть " с Î М, т.е. а(b + с) = аb +ас.

Докажем, что с'Î М, т.е. а(b + с') = аb + ас'.

Преобразуем левую часть равенства к правой части этого равенства.

а(b + с') а(b + с)' a(b + с) + а (аb + ас) + а аb+ (ас + а) аb + ас'

ч.т.д., => с'Î М, тогда М Ì NÙ (1 Î M (с Î М => с' Î М)) => M = N, т.е. равенство а(b + с) = аb+ас истинно для любого натурального числа с, а также для любых натуральных чисел а и b, т.к. они были выбраны произвольно.

Доказательство свойств операций сложения и умножения проводилось на основе аксиомы индукции Пеано (аксиома 4).

Его можно применять для доказательства других утверждений о натуральных числах, опираясь на следующую теорему.

Теорема 5. (Принцип математической индукции).

Если утверждение А(n) с натуральной переменой n истинно – для n = 1, т.е. А(1) – истинно и из того, что оно истинно для n = к, т.е. А(к) – истинно (к – произвольное натуральное число), следует что оно истинно для следующего числа n=к1, то утверждение А(n) истинно для любого натурального числа n.

(к1= к+1)

Доказательство методом математической индукции состоит из двух частей:

1. Доказывают, что А(1) – истинно (n = 1)

2. (П.И.) Предполагают, что утверждение А(к) – истинно (n = k) и, используя это предположенив, доказывают, что А(к1) – истинно (n = к1 = к + 1), т.е.

А(к) Þ А(к1) истинное высказывание.

Если А(1) Ù (А (к) Þ А(к1)) – истинное высказывание, то делают вывод об истинности утверждения А(n) для " nÎ N.

Задача 6. Доказать, что для любого натурального числа n, сумма n первых чисел натурального ряда S (n) = т.е. 1 + 2 + 3 + … + n = - S (n).

Решение.

1. При n = 1 утверждение истинно, т.к. в левой части равенства имеем

S(1)= 1, в правой

2. П.И. (предположение индукции). Пусть при n = к S) – истинно, т.е.

1 + 2 + 3 + … + к = . Докажем, что А(к) Þ А(к+1) – истинно.

Действительно, S (к+1 )= 1 + 2 + … + к + (к + 1) = S)+(к + 1). По предположению S)= , значит, S (к+1 )= +(к+1)= = Таким образом, А(к) Þ А(к1) – истинно.

Следовательно, на основании принципа М.И. данное утверждение S (n) – истинно для любого натурального n.

Задача. Докажем методом М.И., что утверждение (6n – 1) 5 " nÎ N.

1. Пусть n = 1; 61 – 1 = 5; 5: 5 – истинно значит, при n = 1 утверждение истинно.

2. Допустим (П.И.), что при n = к утверждение (6к – 1) 5 – истинно. Докажем, что оно будет истинным, при n = к + 1 = к1, т.е. (6k¢ – 1) 5.

1 способ. Рассмотрим разность (6к+1–1)–(6к–1). После преобразований получаем: 6к+1 – 1 – 6к + 1 = 6к × (6 - 1) = 6к × 5. Произведение (6к × 5) 5, т.к. 5 5, а (6к-1) 5 (по предположению). Получаем 6к+1 1 = (6к – 1) + 6к × 5, т.к. каждое слагаемое делится на пять, то по теореме о делимости суммы (6к+1 – 1) 5.

2 способ. Преобразуем выражение 6к+1 – 1 = 6к × 6 – 1. Прибавим и вычтем число 6, получим 6к+1 – 1 = 6к × 6 – 6 + 6 – 1 = 6(6к – 1) + 5. В полученном выражении (6к – 1) 5 по предположению, а т.к. второе слагаемое 5, то (6(6к – 1) + 5) 5, а это значит (6к+1 – 1) 5.

На основании доказанного и теоремы индукции утверждение (6n – 1) 5 при любом натуральном n.

Контрольные вопросы

1. Сформулируйте и запишите свойства операции сложения.

2. Используя определение сложения, найдите значение выражения:

а) 3 + 2; б) 3 + 3; в) 3 + 4;

3. Какие законы сложения изучаются в начальном курсе математики? Приведите примеры.

4. Объясните, какие теоретические положения используются при нахождении суммы 6 + 3:

6 + 3 = 6 +(2 + 1) = (6+ 2)+1 = 8+1 = 9.

5. Используя определение умножения, найдите значение выражения:

а) 3 × 2; б) 3 × 3; в) 3 × 4.

6. Сформулируйте и запишите свойства операции умножения.

7. Какие законы умножения изучают в начальном курсе математики? Приведите примеры их использования.

8. Дайте определение отношения «меньше» («больше») для натуральных чисел.

9. Какое из отношений:

а) отношение «меньше»;

б) отношение «больше»;

в) отношение «непосредственно следовать за»является отношением порядка?

10. Запишите законы монотонности сложения и умножения натуральных чисел. Какие свойства неравенств они выражают?

11. Сформулировать принцип математической индукции.







Дата добавления: 2014-11-10; просмотров: 6115. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия