Студопедия — Теоретические основы. Реакции, в результате которых изменяются степени окисления элементов, называются окислительно-восстанови-тельными
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические основы. Реакции, в результате которых изменяются степени окисления элементов, называются окислительно-восстанови-тельными






Реакции, в результате которых изменяются степени окисления элементов, называются окислительно-восстанови-тельными. Окисление - это процесс отдачи электронов, сопровождающийся повышением степени окисления элемента. Восстановление - это процесс присое­динения электронов, сопровождающийся понижением степени окис­ления элемента. Вещество, в состав которого входит окисляющийся элемент, называется восстановителем, а вещество, содержащее вос­станавливающийся элемент, - окислителем («восстановитель окисля­ется, окислитель восстанавливается»).

Степенью окисления называется условный заряд атома в соеди­нении, рассчитанный из предположения, что все связи в нём ион­ного типа. При расчёте степеней окисления нужно учитывать сле­дующее.

1. В простых веществах степени окисления элементов всегда равны нулю: Feo, P4o, Heo, O2o, N2o, H2o, Co.

2. Водород в соединениях с неметаллами имеет степень окисле­ния +1: H+1Cl, H+12O, NaOH+1, а в соединениях с металлами - -1: NaH-1, Ca H-12.

3. Кислород в соединениях характеризуется степенью окисле­ния -2: FeO-2, P2O-25, H2SO-24, Ca(NO-23)2. Исключение состав­ляют пероксиды (H+12О-12, Ва+2О-12) и фторид кислорода (О+2F-12).

4. Элементы главных подгрупп I, II и III групп периодической системы имеют постоянные степени окисления, равные номеру группы: Na+1Cl, Mg+2O, Al+32(SO4)3.

5. Сумма положительных и отрицательных «зарядов» на всех атомах в молекуле равна нулю.

Для элементов с непостоянной степенью окисления её значение можно подсчитать по формуле соединения. Определим в качестве примера степень окисления серы в H2S, SO2, SO3, H2SO3, H2SO4. Обозначим её через c. Зная, что степень окисления водорода равна +1, а кислорода -2, получим:

H2S c(S) + 2(+1) = 0, откуда c(S) = -2

SO2 c(S) + 2(-2) = 0, откуда c(S) = +4

SO3 c(S) + 3(-2) = 0, откуда c(S) = +6

H2SO3 c(S) + 2(+1) + 3(-2) = 0, откуда c(S) = +4

H2SO4 c(S) + 2(+1) + 4(-2) = 0, откуда c(S) = +6

Окислительно-восстановительные свойства веществ зависят от ве­личин степеней окисления входящих в него атомов. Атом в высшей степени окисления может только отдавать электроны, то есть может быть только окислителем (S+6 + 2 ¾ ® S+4). Атом в низшей сте­пени окисления может только отдавать электроны, то есть может быть только восстановителем (S-2 - 2 ¾ ® So). Если степень окисления атома промежуточная, он может как отдавать, так и принимать электроны, проявляя окислительно-восстановительную двойственность. Например, в реакции SO2 + O2 ¾ ® SO3 оксид серы (IV) за счёт атома S(+4) проявляет свойства восстано­вителя, подвергаясь окислению:

S+4 - 2 ¾ ® S+6.

А в реакции SO2 + Н2S ¾ ® So + Н2О оксид серы (IV) проявляет свойства окислителя, подвергаясь восстановлению: S+4 + 4 ¾ ® So.

Кислород проявляет положительную степень окисления только в соединении со фтором, поэтому нулевая сте-

пень окисления для ки­слорода практически является максимальной. Следовательно, свобод­ный кислород может быть только окислителем и подвергаться вос­становлению: Oo2 + 4 ¾ ® 2О-2.

Коэффициенты в уравнении окислительно-восстанови-тельной ре­акции можно расставить с помощью метода электронного баланса. Метод основан на том, что общее число электронов, отдаваемых восстановителями и принимаемых окислителями в одной и той же реакции должно быть одинаковым. При этом рекомендуется при­держиваться следующих правил.

1. Для данной схемы реакции определить окислитель и восстано­витель, подсчитав степени окисления элементов до и после реакции. Например, в реакции, протекающей по схеме

KMn+7O4 + Na2S+4O4 + H2SO4 ¾ ®

¾ ® Mn+2SO4 + Na2S+6O4 + K2SO4 + H2O

изменяют степень окисления только марганец и сера.

2. Составить электронные уравнения процессов окисления и вос­становления:

Mn+7 + 5 ¾ ® Mn+2 окислитель (восстановление) (1)

S+4 - 2 ¾ ® S+6 восстановитель (окисление) (2)

3. Найти наименьшее общее кратное (НОК) для числа принятых (уравнение 1) и отданных (уравнение 2) электронов и с его помо­щью расставить множители для обоих уравнений: НОК для 5 и 2 равно 10, множитель для уравнения (1) - 10: 5 = 2, множи­тель для уравнения (2) - 10: 2 = 5.

Mn+7 + 5 ¾ ® Mn+2 2

S+4 - 2 ¾ ® S+6 5

2 Mn+7 + 5 S+4 ¾ ® 2 Mn+2 + 5 S+6

Такая процедура получила название «составление электронного ба­ланса».

4. Найденные коэффициенты подставить в уравнение реакции:

2KMnO4 + 5Na2SO3 + H2SO4 ® 2MnSO4 + 5Na2SO4 + K2SO4 + H2O

5. Подобрать остальные коэффициенты в следующем порядке:

- перед соединениями, содержащими атомы металлов (в данном примере 1 перед K2SO4);

- перед формулой вещества, создающего среду в растворе (в на­шем случае перед формулой H2SO4 необходим коэффициент 3, так как на связывание ионов Mn+2 и К+ идёт три моля кислоты);

- перед формулой воды - по числу атомов водорода (3).

6. Проверить правильность расстановки коэффициентов, подсчи­тав суммарное число атомов каждого элемента в левой и правой частях уравнения. Нередко ограничиваются подсчётом числа атомов кислорода в исходных веществах и продуктах реакции. Окончательный вид уравнения:

2KMnO4 + 5Na2SO3 + 3H2SO4 ═ 2MnSO4 + 5Na2SO4 + K2SO4 + 3H2O

Окислительно-восстановительные реакции подразделяются из три типа:

1. Межмолекулярные окислительно-восстановительные реакции. В таких реакциях обмен электронами происходит между различ­ными молекулами разных веществ. К этому типу относятся выше приведённая реакция, а также следующий пример: +2

 
 


Cu+2SO4 + Zn0 ═ Zn+2SO4 + Cu0

-2

 

2. Внутримолекулярные окислительно-восстановительные реакции. В таких реакциях окислитель и восстановитель входят в состав од­ного вещества. Например:

+6

2KCl+5O-23 ═ 2KCl-1 + 3O02

-2

 
 


3. Реакции диспропорционирования (реакции самоокисления-само­восстановления). В таких реакциях молекулы одного и того же ве­щества взаимодействуют друг с другом как окислитель и восстано­витель. Диспропорционированию подвергаются подвергаются веще­ства, содержащие атомы в промежуточной степени окисления, на­пример: +2

 
 


3K2Mn+6O4 + 2H2O ═ 2KMn+7O4 + Mn+4O2 + 4KOH

-1

 
 








Дата добавления: 2014-10-22; просмотров: 651. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия