Студопедия — Историческая справка. Электроника зародилась в начале ХХ века после создания основ электродинамики (1856-73 г.г.), исследования свойств термоэлектронной эмиссии (1882-1901 г.г.)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Историческая справка. Электроника зародилась в начале ХХ века после создания основ электродинамики (1856-73 г.г.), исследования свойств термоэлектронной эмиссии (1882-1901 г.г.)






Электроника зародилась в начале ХХ века после создания основ электродинамики (1856-73 г.г.), исследования свойств термоэлектронной эмиссии (1882-1901 г.г.), фотоэлектронной эмиссии (1887-1905 г.г.), рентгеновских лучей (1895-97 г.г.), открытия электрона (Дж. Дж. Томсон, 1897 г.), создания электронной теории (1892-1909 г.г.).

Развитие электроники началось с изобретения лампового диода (Дж. А. Флеминг, 1904 г.); трехэлектродной лампы – триода (Л. Де Форест, 1906 г.); использования триода для генерирования электрических колебаний (нем. инж. А. Мейснер, 1913 г.); разработки мощных генераторных ламп с водяным охлаждением (М.А. Бонч-Бруевич, 1919-25 г.г.) для радиопередатчиков, используемых в системах дальней радиосвязи и радиовещания.

В течение короткого времени были созданы основные электронные приборы. Вакуумные фотоэлементы (экспериментальный образец создал А.Г. Столетов, 1888 г., пром. образец – нем. ученые Ю. Эльстер и Г. Хейтель, 1910 г.), фотоэлектронные умножители – однокаскадные (П.В. Тимофеев, 1928 г.) и многокаскадные (Л.А. Кубецкий, 1930 г.) – позволили создать звуковое кино, послужили основой для разработки передающих телевизионных трубок – видикона (идея предложена в 1925 г. А.А. Чернышевым), иконоскопа (С.И. Катаев, независимо от него В.К. Зворыкин, 1931-32 г.), супериконоскопа (П.В. Тимофеев, П.В. Шмаков, 1933 г.), суперортикона (двухсторонняя мишень для такой трубки была предложена сов. ученым Г.В. Брауде в 1939 г., впервые суперортикон описан амер. учеными А. Розе, П. Веймером и Х. Лоу в 1946 г.) и др.

Создание многорезонаторного магнетрона (Н.Ф. Алексеев и Д.Е. Маляров под рук. М.А. Бонч-Бруевича, 1936-37 г.г.), отражательного клистрона (Н.Д. Девятков и др. и независимо от них В.Ф. Коваленко, 1940 г.) послужило основой для развития радиолокации в сантиметровом диапазоне волн. Пролетные клистроны (идея предложена в 1932 г. Д.А. Рожанским, развита в 1935 г. А.Н. Арсеньевой и нем. физиком О. Хайлем, реализована в 1938 г. амер. физиками Р. и З. Варианами и др.) и лампы бегущей волны (амер. ученый Р. Компфнер, 1943 г.) обеспечили дальнейшее развитие систем радиорелейной связи, ускорителей элементарных частиц и способствовали созданию систем космической связи.

Одновременно с разработкой вакуумных электронных приборов создавались и совершенствовались газоразрядные приборы (ионные приборы), например, ртутные вентили, используемые главным образом для преобразования переменного тока в постоянный в мощных промышленных установках, тиратроны для формирования мощных импульсов электрического тока в устройствах импульсной техники, газоразрядные источники света.

Использование кристаллических полупроводников в качестве детекторов для радиоприемных устройств (1900-1905 г.г.), создание купроксных и селеновых выпрямителей тока и фотоэлементов (1920-1926 г.г.), изобретение кристадина (О.В. Лосев, 1922 г.), изобретение транзистора (У. Шокли, У. Браттейн, Дж. Бардин, 1948 г.) определили становление и развитие полупроводниковой электротехники.

Разработка планарной технологии полупроводниковых структур (конец

50-х, начало 60-х г.г.) и методов интеграции многих элементарных приборов (транзисторов, диодов, конденсаторов, резисторов) на одной монокристаллической полупроводниковой пластине привело к созданию нового направления – микроэлектроники. Основные разработки в области интегральной электроники направлены на создание интегральных схем – микроминиатюрных электронных устройств (усилителей, преобразователей, процессоров ЭВМ, электронных запоминающих устройств и т. п.), состоящих из сотен и тысяч электронных элементов, размещаемых на одном полупроводниковом кристалле площадью в несколько мм2.

Микроэлектроника открыла новые возможности для решения таких проблем, как автоматизация управления технологическими процессами, переработка информации, совершенствование вычислительной техники и других, выдвигаемых развитием современного производства.

Создание квантовых генераторов (Н.Г. Басов, А.М. Прохоров и независимо от них Ч. Таунс, 1955 г.) – приборов квантовой электроники – определило качественно новые возможности электроники, связанные с использованием источников мощного когерентного излучения оптического диапазона (лазеров) и построением сверхточных квантовых стандартов частоты.

Фундаментальные исследования в области физики и технологии электронных приборов выполнили М.А. Бонч-Бруевич, Л.И. Мандельштамм, Н.Д. Папалекси, С.А. Векшинский, А.А. Чернышев, М.М. Богословский и многие другие.

По проблемам возбуждения и преобразования электрических колебаний, излучения, распространения и приема радиоволн, их взаимодействия с носителями тока в вакууме, газах и твердых телах работали Б.А. Введенский, В.Д. Калмыков, А.Л. Минц, А.А. Расплетин, М.В. Шулейкин и др.

В области физики полупроводников – А.Ф.Иоффе, люминесценции и по др. pазделам физической оптики – С.И. Вавилов, квантовой теории рассеяния света излучения, фотоэффекта в металлах – И.Е. Тамм и многие другие.

 







Дата добавления: 2014-12-06; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия