Студопедия — Первое начало термодинамики для идеальных газов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Первое начало термодинамики для идеальных газов






 

Чтобы из общих термодинамических соотношений можно было получать конкретные результаты, надо знать, во-первых, уравнение состояния

f (P, V, T) = 0. (5.1)

Во-вторых, надо знать внутреннюю энергию тела как функцию параметров, определяющих его состояние, например

U = U (T, V). (5.2)

Выражение типа (5.2) называется калорическим уравнением состояния, в отличие от (5.1), называемого термическим уравнением состояния. Оба эти уравнения не могут быть получены методами теоретической термодинамики. Они находятся экспериментально, или методами статистической физики.

Рассмотрим приложения первого начала термодинамики к идеальным газам. Все слагаемые в уравнении первого начала термодинамики пропорциональны количеству вещества (числу молей n). Поэтому, чтобы не загромождать формулы, будем в дальнейшем рассматривать системы, состоящие из одного моля вещества.

Термическим уравнением состояния одного моля идеального газа является уравнение Клапейрона-Менделеева

PV = RT. (5.3)

Взяв дифференциал от обеих частей равенства (5.3) получим

PdV + VdP = RdT. (5.4)

Эксперименты показывают, что внутренняя энергия идеального газа не зависит от его объема, а является функцией только температуры. Такой вывод можно сделать на основании опытов по расширению газов в пустоту. В таком процессе внутренняя энергия не может измениться, т.к. газ не совершает работу и не получает тепло. Опыты показали, что температура газа не меняется, тогда как объем возрастает. Из этого можно сделать вывод, что при неизменной температуре внутренняя энергия идеального газа не зависит от объема. Иными словами, внутренняя энергия идеального газа является функцией только температуры U = U (T).

Функция U (T) может быть выражена через теплоемкость CV идеального газа. Выражение (4.4), справедливое для любого вещества, применительно к идеальному газу можно записать как

, или . (5.5)

Отсюда следует, что теплоемкость CV идеального газа, как и его внутренняя энергия, не зависит от объема, а является функцией только температуры. Поэтому для идеального газа

. (5.6)

Опыт показывает, что во многих случаях CV в широких температурных интервалах (от 100 К до 1000 К) остается почти постоянной. Если пренебречь зависимостью CV от температуры, то вместо (5.6) можно использовать более простую формулу

U = CVT. (5.7)

Как показывают опыт и молекулярно-кинетическая теория, для одноатомных газов CV» 3 R /2, для двухатомных CV» 5 R /2, для многоатомных CV» 3 R.

Рассмотрим теперь несколько важных частных случаев процессов с идеальными газами.

1) Изохорический процесс: V = const, dV = 0, C = CV.

d A = 0, d Q = dU = CV dT.

2) Изобарический процесс: P = const, dP = 0, С = СР.

Из соотношения (5.4), учитывая, что dP = 0, следует

d А = PdV = RdT.

Первое начало термодинамики (3.3) в этом случае примет вид

.

Сокращая на dT, получим , или

. (5.8)

Это важное соотношение называется уравнением Роберта Майера.

Соотношение (5.8) может быть получено и из формулы (4.6), если учесть, что для идеального газа (¶ UV) T = 0, (¶ VT) P = R/P.

Работа А 12 и количество тепла Q 12 при изобарическом изменении объема от V 1 до V 2 равны

A 12 = P (V 2V 1) = R (T 2 - T 1),

Q 12 = CP (T 2T 1).

3) Изотермический процесс: Т = const, dT = 0.

dU = 0, d Q = d A = PdV.

При изотермическом расширении от объема V 1 до объема V 2

.

 







Дата добавления: 2014-12-06; просмотров: 534. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия